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Abstract— Motion classification with surface electromyog-
raphy (sEMG) has been studied for practical applications
in prosthesis limb control and human-machine interaction.
Recent studies have shown that feature learning with deep
neural networks (DNN) reaches considerable accuracy in
motion classification tasks. However, DNNs require large
datasets for acceptable performance and fail for tasks with
few data samples available for training. Professional athlete
training includes hundreds of exercises, and coupled with
privacy and confidentiality issues acquiring a large dataset
for all the exercises is not feasible. As a result, state-of-
the-art DNN architectures are unsuitable for real-life sports
applications. We utilise few-shot learning (FSL) techniques to
overcome the small dataset problem of sports-related motion
classification tasks. The employed methodology uses the
knowledge gathered from a large set of tasks to classify
unseen tasks with a few data samples. The FSL approach
with a siamese network and triplet loss reached the best
performance with a median F1-score of 72.01%, 76%, and 79%
for 1, 5 and 10 shot datasets that include an unseen set of
tasks, respectively. In contrast, DNN with transfer learning
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(TF) reached 49.27%, 51.58%, and 67.66% for the same set of tasks, respectively.

Index Terms— Surface Electromyography; Sports Science; Deep Neural Networks; Motion Classification; Meta Learning;

Few-shot Learning

[. INTRODUCTION

N professional sports muscle injury creates a burden on

financials and a barrier to sporting success [1], [2]. To
mitigate the risks of injury, the trainers should observe the
physiological changes of the athletes regularly [3]. Surface
electromyography (sSEMG), a non-invasive medical technique
for measuring the electrical activity on muscle tissue, can
be utilised to monitor such physiological shifts of athletes
during training [4]. The sSEMG signal maintains information
required to detect the movements and monitor the muscle-
related physiological risk factors [5]-[8]. The movement type
determines the contraction technique (i.e., isotonic or isomet-
ric), the muscle activation intensity, and the muscles to be
recruited. To this end, studies have shown that the estimation
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of injury risk factors should be calculated separately for each
movement type [3], [9], [10].

Motion classification via sEMG signal is a supervised
machine learning (ML) task for determining the movements
realised by individuals [11]. The literature on sEMG-based
motion classification mostly focuses on feature engineering to
represent SEMG signals in a discriminative way [12]. Feature
engineering utilises signal processing algorithms, which can be
based on time-domain, frequency-domain or time-frequency-
domain, to extract a feature vector [11]. Recent studies show
that deep neural networks (DNN) could be used to learn
efficient feature vector representations of SEMG data among
various motion classes [13], [14]. Some publications further
reveal that DNNs achieve superior performance compared to
ML methods based on predefined feature engineering models
[13]-[16]. Recent studies have also used domain adaptation
techniques via transfer learning (TL) or meta-learning to
enhance DNN performance against SEMG data variability
[18]. SEMG data is open to variability due to electrode shift,
sensor positioning, muscular fatigue, and human physiological
diversity [19]-[23]. The variability of the SEMG signal can
potentially create unseen data samples to a trained model,
which may distort the extracted features and result in a drop
in classification accuracy [24]-[26]. In [15], the authors adopt
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The top plot displays the sEMG recording of the biceps femoris muscle during single leg elevated glute bridge exercise, which is a lower

extremity activity recorded from a professional athlete. The bottom plot shows the sEMG recording of the hand gesture collected from biceps brachii
during a hand squeeze. The data of the bottom plot is acquired from a publicly available dataset called NinaPro [17]. The lower extremity recording
(top) includes transient sEMG amplitude, while the hand gesture is steady.

a TL strategy for a convolutional neural network (CNN) to
generalise the hand gesture data of unseen subjects using the
knowledge of available datasets. Works [27], [28] employ a do-
main adaptation method to improve deep learning performance
for the same motion labels recorded at different sessions,
i.e., inter-session. The inter-session data of known labels may
vary between different recordings of the same person due to
changes in sensor positioning and fatigue [27], [28]. Finally,
a few-shot learning (FSL) technique is used by [14] to adapt
both intra-session (i.e., different repetitions of a movement
within the same recording) variability and subject dependency
of the sEMG data. All these studies commonly work with the
Ninapro dataset, a publicly available dataset for hand gestures.

In sports applications, there are hundreds of different ex-
ercises, i.e., motion classes, and obtaining a large dataset for
each class is not feasible. However, gathering a small dataset
(e.g., 5 or 10 instances) from numerous motion classes is
achievable. In this case, the standard supervised ML models
fail because of the small dataset size, which limits the predic-
tive power of DNNs [11]. This work addresses this conceptual
and technological gap by proposing a DNN employing a FSL
solution that leverages generalisation across tasks, i.e., motion
classes, rather than across observations in one dataset. The
contributions of this paper can be listed as follows:

o A few-shot meta-learning is employed for the first time
to classify unseen labels of motion classes, given a few
samples of a training dataset, i.e., 1, 5, 10, and 20
observations, respectively.

« A real-life application is tested in a sports setting with the
first-team players of a professional football club (Leeds
United Football Club).

o An FSL approach is tested on a dataset gathered from
lower extremity muscle groups and sports exercises for
the first time. The lower extremity motion types used
in this work take longer than hand gestures and require
long-term correlations of the sSEMG signal. As seen in
Fig. 1, most hand gestures include steady-state, i.e.,

isometric, contractions with a very slight transient-state
at the beginning [11]. On the other hand, the dataset
used in this paper contains a continuous dynamic SEMG
signal, transitioning between eccentric and concentric
contractions [29]-[31].

The paper is organised as follows. We comprehensively
describe the dataset preparation and methodology in Section II.
Then, experiments and data collection are detailed in Sec-
tion III. The results are evaluated in Section IV. Discussion
and conclusion on the results are provided in Section V.

[I. METHODOLOGY
A. Dataset

In this work, we obtain the dataset D from SEMG recordings
of 15 Leeds United Football Club (LUFC) male first-team
athletes while performing 7 different motion types. The Neu-
rocess dry, active, bipolar sSEMG system is used for recording
data [32]. D includes a total of 4,193 set of pairs (x%,y"),
where y' is the true label, 2’ is the recorded sSEMG signal,
and ¢ is the index of the pair. The recorded sSEMG vector

¢ includes a two-channel sEMG signal of length N

X
8000, approximating 8 seconds per channel as the sampling
frequency is f; = 1000 Hz. More details for the experiment
protocol and dataset are documented in Section III.

B. Preprocessing

Data preprocessing involves three steps: segmentation, sam-
ple entropy (SampEn), and downsampling.

In segmentation, we split up the SEMG signal in each data
instance x'[n] into frames of length N = 128 with an overlap
L = 96, which correspond to a total of 248 frames for
each sEMG channel. The frame and overlap size is selected
according to the best-performing parameters in the test in
Section III. We define the resulting column vector, {,Céc, as

o = [2[(f = 1)(N = L)+ 1]...,

#1(F— (N - L) + NI, M
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where f represent the index of frames.

After the segmentation, we calculate the sample entropy
(SampEn) of each frame and then sequentially merge each
result as a vector. We use the SampEn transformation as a
measure of complexity, because its proven to be an effective
SEMG signal representation for amplifying muscle activation
and suppressing noise. For the SampEn step, we first seperate
each frame x} into sub-frames of size s using a sliding window
technique such that the jth sub-frame is given as

Xy ol = [ahli + M]3 - @)
Then, we define the two parameters N**1 and N* as
o« N? , is the number of sub-frames of length s + 1 in

(f78+1' . ; ; .
frame x; having d[X(, . [l X(; o )] <7,

. N(i .9) is the number of sub-frames of length s in frame
o’y having d[X(; o [U], X{; o [] <7
where s = 2, r is the 0.25 times the standard deviation
of xjp, and d is the Chebyshev distance [33]. We determine
the parameters r and s according to the work [4].The output
SampEn vector of the ith observation S*[n] is finally calculated

as
; M—1
| N
§'[f] = [— log (;{*”)] : ©
(f:8) =
f=0

where the total frame size M = 248.

A larger value of SampEn indicates that there are fewer
similar sequences of length s+ 1 than those of length s, which
suggests a higher level of randomness and unpredictability
[33]. We apply the SampEn transformation to each frame x?
and combine the outputs sequentially to get S*[f].

In the final pre-processing stage, we downsample the Sam-
pEn vector, S?[f]. To reduce the high-frequency components
of the signal, we use the Savitzky—Golay filter with window
size W,, = 51 and the polynomial order P, = 3. The filter
is a finite-impulse response low-pass filter based on local
least-squares polynomial approximation [34]. Let C' be the
coefficient matrix for the local least square estimation such
that

c=J) T, (4)

where J is Vandermonde matrix of size 51x4. The output of
the Savitzky-Golay filter, S%, is calculated as

Po—1
2
Sl =(Cx8);= Y CS[+k, O
= Bt
such that
P,+1 . P,-1
sjsISl=—— (6)
Next, we decimate the filtered signal St by 4 as
M
Tk = | STk - 1)+ 1] " ()

k=1
where Z° is the decimated signal.

At the end of pre-processing, we obtain z° of size 2261
from the recorded sEMG signal of size 228000. In the rest of
the paper, we use the pre-processed dataset D, which include
pairs of (Z%,y*).

C. Base Deep Learning Model

In both meta-learning and TL applications, there is a need
for a deep learning (DL) structure that extracts SEMG features
efficiently in the given task set. This section details the DL
structure used as the base model in the rest of the paper.

The tasks in our dataset include SEMG signal with se-
quential patterns and temporal dependencies, and we choose
bidirectional long short-term memory (BiLSTM) recurrent
neural network (RNN) to learn those temporal patterns [4],
[35]. Conventional LSTM RNNs are used in sequence classi-
fication due to their ability to extract temporal attributes [36]—
[38]. BILSTM RNNs process data in both directions of time
with two hidden layers without bringing any implementation
complexity to the model [39].

As seen in Table I, the overall model consists of two
cascaded BiLSTM-RNN layers, two fully connected layers,
and an output layer. The BiLSTM RNN layers and the fully
connected layers extract a feature vector representing the
discriminative features of the SEMG sequence. The final output
layer is the classifier that predicts the label, %, of any given
input Z°. To tune the model, we test varying numbers of hidden
layers on a test dataset. The model with the highest median F-
1 score is adopted as the base model. The details are provided
in Section III.

Let @ be a subset of € in D. Then, the DL model fo with
trainable parameters ¢ can be represented as

fo: R¥OL @, ®)

In conventional supervised learning, the optimum trainable
parameters ¢* is calculated as

¢" = arg Hgnﬁ(D; b, w), ©))

where £ is the binary cross entropy loss function, w is the
Adam optimizer.

TABLE |
THE DETAILS OF THE DEEP LEARNING MODEL ARCHITECTURE WITH
TYPE OF LAYER, LAYER OUTPUT VECTOR SHAPE, AND TOTAL NUMBER
OF TRAINABLE PARAMETERS.

Layers Type Output Shape

0-1 Input (2)* (61,2)

1-2 BiLSTM (2)* (61, 256)
2-3 BIiLSTM (1)* (61,128)
3-4 BiLSTM (1)* (128)

4-5 FC (1)* 64

5-6 FC (1)* 32

6-7 FC (1)** [§]

* The number inside the parenthesis next to the layer type

represent the number of parallel layers.
sx The output shape of the model is selected as the number of unique

labels in the training set, denoted by |C)|.

D. Transfer Learning (TL)

In this work, we aim to adopt TL to use the acquired
knowledge from a set of tasks C! such that C! C € over
a set of unseen tasks ©2 such that €2 C € and €2 N C! = (.
TL allows us to use the same model structure and generalised
knowledge for different tasks by only changing the classifier
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layer. Assume fy-(-) is the trained model for the set €' and
for (+) is the feature extractor, i.e., same model with classifier
layer removed, such that

f¢* . RQIGl — R32, (10)

where the output vector R3? is the feature embedding. To
utilise the trained feature extractor fz(-) of the set C! to
the set €2, we add a classifier layer that has the same output
shape with the size of C? as

FE L R¥OL 02, (11)

In (11), the optimized parameters for the task G is transferred
to the feature extractor of fg'2 (+). For a better performance,
the model parameters, ¢* can be retrained and calibrated for
the task C? as

P = arg min L(D; ¢, w), (12)
where ¢** is the retrained model parameters and ®* is the
subspace for optimization which is restricted by the transferred
model. This study employs two TL techniques, fine-tuning and
adaptive batch normalisation, for the retraining procedure in
(21). Each of these techniques restricts the optimization space
in different ways which are clear in the content.

1) Fine-Tuning: In fine-tuning, some layers of the feature
extractor fy(-) in (10) are kept frozen, i.e., untrainable,
and some other layers are updated in accordance with Equa-
tion (21). In a DNN, the first layers detect simpler and
more general patterns, while the deeper layers learn more
complicated and specific dataset features [40], [41]. In this
work, freezing the first BILSTM RNN layer and keeping the
other layers trainable reach the best performance for fine-
tuning, which is detailed in Section III.

2) Adaptive Batch Normalisation (AdaBatch): To apply Ad-
aBatch, fy(-) is trained for the task C! with batch normaliza-
tion (BN) technique as in [42]. Then, all the layers except
the BN layers of f_¢() are frozen prior to retraining for
the task C2. The hypothesis behind this method suggests that
the domain-related information is stored in BN layers, and
updating the BN weights for the new task enhances domain
adaptation [15].

E. Few-Shot Learning

This paper employs metric-based FSL, formulated as N-
way, K -shot. FSL is part of a meta-learning framework such
that a base learner solves any given task, and a meta-learner
learns the aggregated across-task knowledge from existing
tasks to classify unseen labels with a small dataset [43].

In metric-based FSL, the model predicts the label of any
given query, i.e., Z, by comparing the similarity of the query
with the other classes in the support set 8“7, which is defined
as

85 = [(Z1,01), - (Zx,yK)] (13)

where c is a class in the set @2, which is the set of unseen tasks.
For the sake of simplicity, we denote it as C. The pairs in (13)
are selected randomly from the set {(Z,y) € Di"*"|y € C}
with replacement. N denotes the number of distinct ¢, and

K represents the number of pairs in 8“7, A query sample
is randomly selected from the set {(Z,y) € Dtst|y € C}. It
is associated with support set 85“P. This relation is called an
episode. To make a prediction, the model makes a pairwise
comparison of the query = with all the samples of the support
set in an episode and selects the ¢ with the highest similarity
or lowest distance among the classes in C.

In this paper, we adopt metric-based FSL. Thus all the
following methods are functions to estimate the distance or
similarity between the query-support pair. We use the base
model feature extractor fy-(-) in (10) to extract the feature
embedding.

1) LP Norm: Let CLP(-) be a classification function that
maps a query sample & to a task in the set € based on a
support set S*"P. We define C'LP(-) as

CL(3) = arg mi ﬁ S e @) — Far @
‘ ¢ @iyi)essr
(14)
The LP norm, i.e., || - ||, of a sequence z[n] is calculated as
i=n
15)

lally = 3 ()7

In this work, we use C'LP(-) for three different p values: p = 1,
i.e., Manhattan Distance, p = 2 i.e., Euclidean Distance, and
p = 20.

2) Matching Network with Fixed Attention: First, we recall
the cosine similarity cos(-) of two sequence z,[n] and xp[n]
as

cos(Tq,Tp) = (a, 23) :ZZzlrra[k]mb[k]
T eallollwslls ~ lzallzlzslz

(16)

Next, we calculate the cosine similarity between the feature
embedding of query Z* and the pairs of support set 8“7 as

=ﬁ S cos(fye (@), For (@)

(Ti,yi) €SP

a7

Let CM(-) be a classification function that maps a query
sample 7 to C2 based on a support set S*“P by utilising the
softmax function for majority voting.

N A exp(—dc)
CM(3) = —3.) = —_—
(7) = arg cecs o(=dc) = arg cecs Y ece exp(—2z)
¢!

3) Prototype Network with L?> Norm: The average embedded
vector Z. for each class in the support set is calculated as

. 1 7o
Te = W ) Z » f¢* (.T,L) (19)
(&i,y:)€8"P
Then the classification function C'P(-) is defined as
CP(7) := argmaxo(—[|lzc = fo-(2)ll2).-  20)

4) Siamese Network: In this approach, we employ a deep-
learning architecture to determine if both samples in a pair
belong to the same class. As seen in Table II, the overall
model consists of three fundamental parts: a siamese (twin)
network architecture with shared weights, a lambda layer
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which calculates the absolute difference of two feature vectors,
two fully connected layers, and one output layer which returns
a similarity score. The twin network consists of a duplicate of
the base DL model f4,. in Section II. We apply TL to use
the acquired knowledge of the other set of tasks. We use two
different loss functions: contrastive loss and triplet loss. Both
loss functions aim to minimise the distance metric for the same
class samples while maximising the distance for distinct ones.

The training batch for contrastive loss consists of (Z;, 27, 0)
and (7;,z", 1) where T denotes a sample with the same label
with Z;, and £~ denotes a sample with a different label from
Z;. Note that any pair in the training batch is randomly selected
from the samples of the tasks in C'.

The training batch for triplet loss consists of (Z;, 27, z7).
Therefore, the contrastive loss and triplet loss are denoted
by £? and L£°, respectively. Then, the siamese model SLY,
with trainable parameters ¢ and the selected loss £P can be
represented as:

8L% : R¥*27%2 0, 1]

For better performance, the model parameters, ¢, can be
retrained and calibrated for the similarity of a given pair,

Kk : P .
Q** = arg ;Ielgl LP(D; p,w), 21
where ¢** is the retrained model parameters, £P is the selected
loss, and ®* is the subspace for optimisation which the
transferred model restricts. It is clear that both the transferred
model fqb* and the siamese model 8L 4+~ encounters only the
samples labelled as one of the tasks in the set C'. Let C'S(.) be
a classification function that maps a query sample Z to the set
©2 based on a support set S*UP. It is defined for the selected
loss LP as:

CSP(z,S°"P) = arg max 1 Z

cee? |SEUP y
|5e |<ii,yi>eszw

SLZ** (Z,7;)
(22)

TABLE Il
THE DETAILS OF THE SIAMESE NETWORK ARCHITECTURE WITH TYPE
OF LAYER AND LAYER OUTPUT VECTOR SHAPE

Layers Type Output Shape
0-1 Input (2)* (61,2)
1-6 fo (2)** (32,1)
6-7 Absolute Difference (1) 32
7-8 FC (1)* 32
8-9 FC (1)* 16
9-10 FC (1) 1

* The number inside the parenthesis next to the layer

type represent the number of parallel layers. _

xx It is the first 6 layers in the transferred model fq (see Table 1), used as
feature embedding function.

[1l. EXPERIMENTS

The SEMG data was recorded from 15 Leeds United Foot-
ball Club (LUFC) male first-team athletes via the Neurocess
system, which consists of wireless, dry, active, bipolar SEMG
sensors [32]. During the experiments, two SEMG sensors were
positioned on each subject’s left and right biceps femoris
long head muscles. The SENIAM recommendations suggest

that the electrodes need to be placed at 50% on the line
between the ischial tuberosity and the lateral epicondyle of the
tibia [44]. For the replication of the experiment process, we
provide an illustration of the electrode placement in Fig. 2. The

Fig. 2. The illustration of electrode placement location and orientation
for the biceps femoris long head muscle group.

N

experiment protocols and sensor positioning were supervised
and maintained by the first-team physiotherapist of LUFC.
We completed all the SEMG recordings in the LUFC training
ground under ethical clearance guidelines granted by King’s
College London, referencing MRSP-20/21-20996. We did not
keep any personally identifiable info during the experiments
and anonymised all the documented data.

The athletes were requested to realise the following ham-
string drills:

e (C'1) 60° adductor squeeze: The athlete lies in a supine
position with 60° hip flexion and squeezes the examiner’s
fist, which is located between the athlete’s knees.

¢ (C2) Glute bridge: The athlete lies down in a supine
position, knees in full flexion and feet flat on the floor
and close to the hip. Then the athlete lifts his hip off the
floor as high as possible.

e (C3) single leg (SL) elevated long-lever bridge: The
athlete lies down in a supine position, with his feet flat
on a box of 45cm height and with knee flexion angle 45°.
Then, the athlete lifts his hip off as high as possible using
only one leg.

e (C'4) Isometric prone contraction: The athlete lies down
prone with his knee flexed at 45°. The examiner locates
his hands on the athlete’s ankle giving full resistance, and
the athlete tries to contract against that resistance.

e (CH) Elevated glute bridge: The athlete lies down in a
supine position, knees in 90° flexion and feet flat on a
45cm box. Then the athlete lifts his hip off the floor as
high as possible.

e (C6) SL prone curls: The athlete lies down prone with
his knee at 0°. Then, he curls his knee up to 90° and back
to 0° with his hip at a stable position.

¢ (C'7) Running: The athlete runs on a treadmill with 3 kph
speed.

The dataset D is split into training (Dtreiny  yalidation
(Dv), and test (D*est) sets. The training set is used to train
the base model f,(-), the validation set is used to prevent
overfitting during the training, and the test set is used to
test and compare all the methods. In Table III, the training,
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validation, and test set sizes are provided.

TABLE IlI
MOTION TYPES AND CORRESPONDING SAMPLE SIZE OF TRAINING,
VALIDATION, AND TEST SETS

Motion type | Training Set | Validation Set | Test Set
Cl 389 111 120
Cc2 487 111 120
C3 540 153 120
C4 301 76 120
C5 244 62 120
C6 318 65 120
C7 403 93 120
total 2682 671 840

To simulate a real-life setting for the motion classification,
we create multiple tasks using the classes in D. The set of
tasks C includes all the 7 motion classes in D, and it is used
to test the performance of the base DL model. The set of
tasks C! consists of the classes C'1 to C4 and The set of tasks
C2 consists of the classes C5 to C'7 in D. In this study, we
repeated all the experiments 10 times with different random
seeds for splitting the dataset and determining initial model
weights. To compare the performance of the methods, we
employed the Fl-score. Since each method was tested with
10 iterations of different random seeds, we used the median
and the interquartile range (IQR) to summarise the results. The
IQR is the difference between the 3% quartile and 1°¢ quartile
of a distribution, contributing to the range of the central half
of the distribution. We picked median and IQR over mean and
standard deviation to represent the results since median and
IQR are more robust when the distribution includes outliers.
The high IQR represent that the data is more spread out,
while the small IQR value means that the data points are more
crowded around the median. For our case, the small IQR with
high median values of Fl-scores are preferred.

A. Selection of Model Parameters and Structure

We first selected the optimum number of BiLSTM layers
for the DL model, fy, by testing the model performance with
various numbers of layers for the set of tasks C.

Then, we determined the best-performing parameters for the
pre-processing step by testing the ideal DL model fy with
various values of frame size, overlap, and downsampling rate
for the set of tasks C.

To pick the ideal number of frozen layers for the TL
technique, described in II-D.1., we first trained the base model
fo for the set of tasks C! and then used the dataset of the set
of tasks G2 with a various number of frozen layers.

B. New Task with Few Samples

To simulate a real-life sports setting, we aim to classify
a set of tasks, @2, with a few samples using the knowledge
aggregated from another set of tasks C!.

Let v be the sample per class in the training set of the model
DL classfier. Precisely, the training set in this experiment
consists of |€?|v sample. We ran this experiment by following
v values 1, 5, 10, 20, and 50. To compare the performance of
the proposed methodology, we used the following tests.

1) Base DL model: To see how the DL model performs with
a small dataset, we trained the model with different numbers
of samples for G2 without using any data of C'.

2) TL: We first trained the base DL model with data of C!.
Then, we applied TL techniques using a few samples of ©2.

3) Metric-Based Few-Shot Learning: Same as III-B.2, we
train the base model with C' and then apply the FSL tech-
niques in II-E using €2 as 85“P.

IV. RESULTS

As detailed in Section III-A, the first part of the experiments
includes the selection of ideal parameters and model structure.

We tested various hidden BiLSTM layers for the first
validation step to select the ideal number of layers for a
set of tasks C. As seen in Table IV, a total number of 3
BiLSTM layers result in the best performance with 79.26%
median F1-score. Consequently, we employed the base DL

model structure with 3 cascaded BiLSTM layers.

TABLE IV
MEDIAN F1 SCORE AND IQR FOR BASE DL MODEL TESTED FOR A SET
OF TASKS WITH 1, 2, 3, 4 NUMBER OF BILSTM LAYERS
RESPECTIVELY

| 1 Layer | 2 Layer | 3 Layer | 4 Layer

F1 Score | 78.08 74.94 79.26 74.69
IQR 2.11 2.78 4.99 4.38
TABLE V

MEDIAN F1 SCORE AND IQR OF THE BASE DL MODEL fg FOR EACH
CLASS IN THE SET OF TASKS €2

Precision IQR | Recall IQR | F1 IQR
C1 | 91,81 2,65 | 90,00 5,55 | 90,32 2,96
C2 | 97,72 2,60 | 89,16 326 | 93,85 1,84
C3 | 92,24 2,89 | 96,66 3,08 | 9555 245
C4 | 89,51 3,64 | 93,44 1,40 | 90,98 245
Av | 92,70 92,31 92,68
TABLE VI

MEDIAN F1 SCORE AND IQR FOR DIFFERENT NUMBER OF FROZEN
LAYERS IN TL FINE-TUNING FOR THE SET OF TASKS €2

| 1 Layer | 1-2 Layer | 1-2-3 Layer |

Median F1 Score 93.04 89.50 87.64
IQR 2.24 0.45 3.01
TABLE VII
MEDIAN F1 SCORE AND IQR FOR DEEP-LEARNING VS SAMPLE PER
CLASS
Sample Per Class v | v =1 | v=5 | v=10 | v =20 | v =50
Median F1 Score 18.53 41.01 59.54 57.47 68.66
IQR 2.27 20.58 8.69 5.44 12.04

After optimising the ideal number of hidden layers of the
base DL model, we selected the best-performing parameters
for the pre-processing step in Section II-B. As seen in Fig. 3,
the frame size N = 128, overlap L = 96, and downsampling
rate of 4 resulted in the highest weighted F1-score of 83%.

The last test of the Section III-A includes the choice of
the ideal number of frozen layers in the TL fine-tuning. First,
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Fig. 3. The plot of weighted F1-scores of various pre-processing parameters, which are frame size, overlap, and downsampling rate respectively.

TABLE VIII
MEDIAN F1 SCORE AND IQR IN TRANSFER LEARNING VS SAMPLE
PER CLASS
Sample Per Class v | v =1 | v=5 | v=10 | v=20 | v =50
Median F1 Score 49.27 51.58 67.66 63.67 72.97
IQR ‘ 11.79 ‘ 9.71 ‘ 9.45 ‘ 5.11 ‘ 7.53
TABLE IX
MEDIAN F1 SCORE AND IQR FOR DIFFERENT FSL ALGORITHMS

k=1 k=5 k=10 k=20 k=50

CIL! F1 63.73 73.7 71.68 74.1 72.56

IQR 5.23 2.85 3.56 441 6.33

Ccr2 F1 64.02 | 7324 | 72.42 | 73.94 | 72.32

IQR | 3.36 1.74 3.34 4.0 6.06

/120 F1 62.3 72.45 | 72.09 | 74.69 | 74.26

IQR 437 1.41 2.0 2.53 1.88

oM F1 65.01 | 71.63 | 71.53 | 73.31 | 71.25

IQR | 3.04 0.7 4.63 4.11 7.49

cp F1 65.01 | 7229 | 73.96 | 76.31 | 74.92

IQR 3.04 2.97 2.75 2.07 3.38

92 F1 70.14 72.57 75.32 7474 | 76.44

IQR 1.14 1.52 0.72 0.98 0.65

cS3 F1 6541 | 75.55 | 76.74 | 78.10 | 73.90

IQR 1.86 1.11 3.00 3.30 0.38

cS3 F1 72.01 | 76.32 | 79.16 | 78.80 | 75.37

AB | IQR 1.10 0.69 0.55 041 0.70

we trained the base DL model fs for the set of tasks Cl.
The test results of the trained base DL model fy4- can be
seen in Table V. We used TL fine-tuning with various frozen
layers, and as seen in Table VI, the first layer frozen resulted
in the finest performance for the unseen set of tasks C2. In the
second part of the experiments, we compared the performance
of the methods described in Section II. In Table VII, the results
for the experiment B.1 are provided. The base deep learning
model fails to distinguish labels when few data is provided
for the training. As seen in Table VIII, The TL approach,
detailed in the experiment B.2, reaches a superior performance
compared to the DL model without TL. The TL technique
improves the median F1 score from 18.53% to 49.27% for
v = 1 dataset, and from 41.01% to 67.66% for v = 5 dataset.

The results of the proposed FSL methods, as detailed in
the experiment B.3, are provided in Table VI. All the FSL

based approaches outperform both TL and DL techniques. The
siamese network with AdaBatch and triplet loss, C'S ?4 5> has
the best performance, where it reaches median Fl-score of
72.01% for 1-shot, 76% for 5-shot, and 79% for 10-shot. The
FSL methods have lower F1-score when the dataset gets larger
than 10-shot due to the variance bias trade off.

V. DISCUSSION & CONCLUSION

sEMG-based motion classification with DNNs has been
investigated mostly for hand-gesture recognition [45], [46].
The existing techniques, including feature engineering and
feature learning, are optimised for large datasets aggregated
under controlled lab settings. However, gathering large data
samples per label in real-life applications is unfeasible. To
this end, we utilised several FSL-based approaches to improve
the DNN performance for unseen tasks with few training
data samples. For the first time, this study applies a few-
shot learning approach for 7 hamstring activities used in sports
training of 15 professional soccer players. The meta-learning
approach with siamese network and triplet loss reached the
best performance with a median Fl-score of 72.01%, 76%,
and 79% for 1, 5 and 10 shot datasets, respectively. We further
tested DNN with and without TF as reference methods to com-
pare the meta-learning performance on the same set of tasks.
The DNN without TF reached 18.53%, 41.01%, and 59.54%
and DNN with TF reached 49.27%, 51.58%, and 67.66% for
1, 5 and 10 shot datasets, respectively. As expected, training
a DNN solely with a small dataset resulted in the lowest
median F1-score with a high IQR, which means that the model
performance depends highly on the training dataset and initial
model weights. The TF improved performance of DNN by
using the retained information from the previous set of tasks
to adapt to the new set of tasks with a small dataset. We
tested 8 different FSL techniques, and all the FSL approaches
outperformed the reference methods, which are DNN with and
without TF. It can be inferred that FSL is effective in SEMG-
based motion classification with a small dataset.

The FSL resulted in the best performance given a new set of
tasks with a small dataset. The model performs a classification
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F1-score above 70% for 1-shot tests, which indicates it can
successfully classify an unseen class of motion even if a single
sample of that label is provided for training. However, the
proposed model must first be trained with a relatively large
dataset to classify a new set of tasks with a small dataset.
This study used a set of tasks, Cl, to train the model, and
then the model can classify any new set of tasks G2 with a
small dataset. The initial training is required to optimise the
base deep learning model, which outputs feature vectors for
similarity or distance tests in the meta-learning method. After
the initial training, the meta-learning model can classify new
tasks without training or large dataset requirements. However,
the proposed methodology cannot be used in certain cases
where no preliminary dataset, such as C 1 is available. In future
work, we will attempt to train the base deep learning model of
the proposed meta-learning approach with the publicly avail-
able NinaPro database, which includes a large dataset of hand
gestures [17]. When trained with a NinaPro dataset, suppose
the meta-learning model can classify few-shot lower extremity
motion classes with similar performance, i.e., median F1-score
higher than 70%. In that case, our model becomes generic
and reproducible for all sports-related motion classification
applications.
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