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Vector-Valued Gossip over w-Holonomic Networks

E. Bayram', M.-A. Belabbas™, T. Bagar*

Abstract

We study the weighted average consensus problem for a gossip network of
agents with vector-valued states. For a given matrix-weighted graph, the gossip
process is described by a sequence of pairs of adjacent agents communicating and
updating their states based on the edge matrix weight. Our key contribution is
providing conditions for the convergence of this non-homogeneous Markov pro-
cess as well as the characterization of its limit set. To this end, we introduce the
notion of “w-holonomy” of a set of stochastic matrices, which enables the charac-
terization of sequences of gossiping pairs resulting in reaching a desired consensus
in a decentralized manner. Stated otherwise, our result characterizes the limiting
behavior of infinite products of (non-commuting, possibly with absorbing states)
stochastic matrices.

Keywords: Consensus; Gossiping; Non-Homogeneous Markov Processes;
Holonomy; Convergence of Matrix Products; Permutation Groups

1 Introduction

Consensus entails reaching an agreement between a set of agents [1]. Many applications
of distributed control systems require agents to reach a consensus for a given quantity;
for example consensus to the average value of their respective initial states. An exten-
sion of average value consensus is the weighted average consensus, in which each agent
contributes to the agreed-upon consensus value based on its assigned weight; see the
literature review below for more details. In this paper, we study the weighted average
consensus problem for a gossiping network of agents with vector-valued states. Specifi-
cally, given a matrix-weighted communication graph, we study the process whereby at
each time step, two adjacent agents in the network communicate and update their states
based on the matrix weight of the edge adjoining them. These two agents are called a
gossiping pair and the overall process is called a weighted gossip process [2, 3|. It
is akin to a non-homogeneous Markov process, and the study of its convergence thus
reduces to the study of convergence of an infinite product of row stochastic matrices
taken from a finite set. It is well known that this is a hard problem for which no general
solution is known.This is due in part to the fact that, save for particular cases such
as a set of commuting matrices, the order in which stochastic matrices appear in the
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infinite product clearly affects the limit set; in fact, this set can be a continuum (see,
e.g. [4] for examples) or it can be finite [5].

We adopt here a vantage point on the consensus problem similar to the one of [5],
where the notion of holonomy of a set of stochastic matrices was introduced. There,
the authors used the term holonomy to indicate a change of a certain left eigenvector
(referred to as weight vector below) corresponding to eigenvalue 1 of the product of
stochastic matrices along any cycle in the graph. For each cycle in the graph, one can
associate a holonomy group (see [6] for the precise definition of a holonomy group). This
group characterizes how the eigenvector changes as gossiping occurs along the cycle.
In [5], the authors consider gossip processes for agents with scalar states and impose
that the entries of a gossip matrix be strictly positive. Together, these restrictions
imply that the holonomy group for a cycle, if it exists, can only be the trivial group.

Our work here extends this earlier work in two fundamental ways. First, we allow
vector-valued states for the agents. Second, and more importantly, we allow zero entries
in the gossip matrices. Said otherwise, we allow for update matrices that have absorbing
states (i.e., have a standard unit vector as a row). These extensions together make
possible the existence of a non-trivial, finite holonomy group in a gossip process, whose
investigation will be one of the main concerns of this paper.

More generally, the hereby adopted set-up raises the following questions: (1) How to
understand the appearance of non-trivial holonomy groups? l.e., situations where the
weight vector changes after completing one loop in the gossip graph, but then returns
to its initial value after completing this loop a finite number of times? (2) Can we still
guarantee the convergence of the weighted gossip process to a limit or a finite limit set
by following a sequence of gossiping pairs in a decentralized manner? (3) How does the
potential presence of absorbing states in gossip updates impact the consensus weight
vector? These three questions are fully addressed in this paper.

To understand the phenomenon described in the first question, we introduce a con-
cept which we call w-holonomy of a set of stochastic matrices. This concept helps us
describe the set of stochastic matrices that possess finite orbit sets when acting on
some vectors. Such matrices are the ones enabling the appearance of holonomy groups
in gossip processes.

For the second question, we introduce the so-called derived graph of the communi-
cation graph G for the weight vector w, which we denote by Dg(w). Infinite exhaustive
closed walks in the derived graph will correspond to allowable sequences of updates in
the gossip process. These updates can be implemented in a decentralized manner, and
yield a process which converges to a finite limit set.

For the third question, the presence of zeros and ones in the update matrices can
significantly impact the consensus weights in our analysis. In particular, they can lead
to some agents not contributing to the consensus value average and to the appearance
of permutation matrices as update matrices. In fact, even when none of the update
matrices are permutation matrices, their product within the gossip iteration can result
in a permutation matrix (as will be illustrated later). This fact greatly complicates the
analysis, and is at the root of the existence of finite limit sets.

The paper is organized as follows: We provide a brief review of the relevant literature
on distributed control and weighted average consensus in the following paragraph. We
then describe the notations and conventions used in the paper at the end of this section.
In Section 2, we provide a precise formulation of the problem solved in this paper. The



notion of holonomy and the main results of the paper are presented in Section 3. The
proof of the main theorem is provided in Section 4 along with some auxiliary results.
A summary of the results of the paper and outlook for future research are provided in
Section 5.

Literature Review In recent decades, there has been an increase in the applications
of multi-agent systems and distributed control. These applications aim to achieve
consensus among agents, as seen in works like [7, 8, 9, 10, 11, 12]. Many of these
systems involve agents with multiple states, highlighting the importance of addressing
weighted average consensus.

The field of weighted average consensus has seen diverse perspectives and contri-
butions over the years, such as [1, 9, 13, 14, 15, 16, 17] and [18]. Research has tack-
led challenges like time delays and asynchronous information spread [19, 20, 21], as
well as changing network topologies due to link failures or reconfiguration [20, 22, 23].
Moreover, works presented by [24, 25] have focused on continuous-time consensus prob-
lems. Various techniques have been used to solve consensus problems, including Lya-
punov function-based methods [14, 26], and approaches inspired by ergodicity the-
ory [27, 28, 29]. Furthermore, research efforts have addressed the constant network
topology driven by the gossip process [4, 5, 30, 31]. Our work falls within the scope of
this latter category of research.

Notations and conventions. We denote by G = (V, E') an undirected graph, with
V = {v1,..., vy} the node set and E = {ey,...,ep} the edge set. The edge linking
nodes v; and v; is denoted by (v;,v;), a self-arc or self loop is denoted by (v;,v;). We
call G stmple if it has no self-loops.

Given a sequence of edges v = e;---¢; in E, a node v € V is called covered by
v if it is incident to an edge in . Given a sequence 7 = ejey - - -, we say that 7' is a
string of ~ if it is a contiguous subsequence, i.e., v = epep 1 - - - € for some k > 1 and
[ > k. Let v = ey ---e; be a finite sequence and e; 1 be an edge of G. The sequence
e1- - epery1 obtained by adding er,; to the end of v is denoted béf) YV ek

For a given simple undirected graph G as above, we denote by G = (V, F) a directed
graph on the same node set and with a “bidirectionalized” edge set; precisely, E is
defined as follows: we assign to every edge (v;,v;) of G, i # j, two directed edges v;v;
and v;v;.

We denote a walk in & either by the succession of edges or the succession of nodes
visited. We say that v = v, ---v;, is a walk in the directed graph G if v;v;,,,, for
¢=1,--- k—1,is an edge of G. We refer to v;, and v;, as the starting- and ending-
nodes of v, respectively. We define y~1 := Vi Vi, =+ Vi Let v = 05, -0, be
another walk in G. We denote by YV« =wv; v, v - - - v;, the concatenation of the
two walks.

If each edge e in G is labeled with some quantity, the graph G is called a weighted
graph. If each edge e in G is labeled with some matrix A., then the graph G is called
a matriz-weighted graph.

We say that p € R™ is a probability vector if p; > 0 and Y, p; = 1. The set of
probability vectors in R™ is the (n — 1)-simplex, which is denoted by A"~!. Its interior



with respect to the standard Euclidean topology in R” is denoted by int A”~!. Then,
if p € int A™71, all entries of p are positive.

On the space of n x m real matrices, we define the following semi-norm for a given
Aec R>m

1Allg = max | max a;,; — ai,l.

It should be clear that the semi-norm of A is zero if and only if all rows of A are equal.
We let 1 be a vector of all ones, whose dimension will be clear from the context.
The support of a matric A = [a;;], denoted by supp(A), is the set of indices ij

such that a;; # 0. We denote by min A the smallest non zero entry of A: min A =

NG jesupp(A) Gij-

A matrix A with order n is reducible if there exist a permutation matrix P such
that,
T A A
prap=| A 2] 8

where A;; and Aj» are nonempty square matrices. If A is not reducible, then A is called
irreducible. For convenience, we denote similarity through the permutation matrix P
by ~p.

The spectral radius of a matrix A is the maximum of the modulus of the elements of
its spectrum, denoted by p(A). A circle on C with radius p(A) is called spectral circle
of the matrix A. A nonnegative irreducible matrix A having A > 1 eigenvalues on its
spectral circle is called imprimitive, and h is referred to as the index of imprimitivity. If
there is only one eigenvalue on the spectral circle of A, then the matrix A is primitive.

The period of the it entry of a nonnegative matrix A is defined as w4 (i) := ged{m :
[A™];; > 0,m € N}. If A is irreducible, then wy (i) = wa(j),Vi,j [32]. This common
value is called the period of the matrix A, denoted by w?.

2 Preliminaries

Let G = (V, E) be an undirected simple graph on n nodes. Each node represents an
agent, and each agents’ state is a vector in R™. We denote the state vector of the
agent ¢ at time ¢ by 27(t) = [z{(t) 2b(t) ... ai,(t)] " The state of the system is the
concatenation of the agents’ states

() = [(='(1) " (@*(t) " ... (@"(t)]" e R™

To an edge (v;,v;) € B, we associate a 2m x 2m row stochastic matrix A;; = {az}. We
refer to flij as a pre-local stochastic matrix for agents ¢ and j. It describes the local
information exchange when these two agents interact as part of the gossip process.
The stochastic process we analyze here is described by sequences of edges v =
€, -+ €, --- in G with the convention that if e;, = (v;,v;), then agents i and j update

their states according to

s+ 5 [2(e)

Lcj(t + 1)] =4 [xj(t) 2)
while the other agents’ states remain constant

a¥(t 4+ 1) = 2"(t) for all k # i, j. (3)



The update equation for z(t) is given by the local stochastic matrix A;;. It is an nm-
dimensional stochastic matrix such that the rows/columns corresponding to the states
of agent i and agent j is the submatrix A,; (2) and the rows/columns corresponding to
the other agents is the identity matrix (3). Then, the gossip process on edge €;, = (v;, v;)
at time t is given by

z(t+ 1) = Aja(t). (4)

For example, the local stochastic matrix A;s, which is associated with the edge (vy, v9),
is given by

/Zl O20mx (n—2)m
A12 — 12 2mx(n—2) (5>
O(n—2)m><2m I(n—2)m><(n—2)m

We assume here that A;; = A;;. Hence, when dealing with sequences of edges in é,
we associate A;; with both v;v; and v;v;. This makes the graph G a directed matrix-
weighted graph.

It is important to note that we allow a pre-local stochastic matrix to have zeros in
any row. Consequently, it is possible to construct a valid local stochastic matrix by
having a single non-zero element in any given row while setting all other elements in that
row to zero (e.g. having a standard unit vector as a row). Moreover, this leads to the
possibility that a valid stochastic matrix can either be a complete permutation matrix
or include a permutation block. We can elaborate on the concept of a permutation block
using the following definition. Given an index set 7 C {1,...,nm}, a stochastic matrix
A has a permutation block for w if the submatrix of A with rows/columns indexed by 7
is a permutation matrix in S). Let m4 be the largest index set among the sets indexing
permutation submatrices in A; we refer to it as the mazimal permutation index of A.

To illustrate, consider the following instances of pre-local stochastic matrices, which
are associated with the edges ey, e5 and es, respectively, in the graph G:

0O 1 0 0 0O 0 1 0 Cc11 C12 Ci5 Cig
T . |G21 Q22 G23 dA24 R 1 0 0 0 R 1 0 0 0
Aey 1= 10 0 O Aoy 1= bss bsa bss  bsg Ay 1= Cs51 Cs2 Cs5 Cs6
Q41 Q42 Q43 Q44 bes bea bes bes C61 Ce2 Ce5 Ce6

(6)
with a;;, b;; and ¢;; real numbers in the open interval (0, 1). Note that none of the pre-
local matrices provided in (6) has a permutation block for any index set; in contrast,
they have rows that have a single nonzero entry.

For a finite sequence v = e; ---¢ of edges in G and for a given pair of integers
0 < s <t <k, we define the transition matrix P, (¢ : s) for t > s + 1 as follows:

Py(t:s) = AeAc, - Aeyiy (7)
We set P,(t : s) = I for t < s. This allows us to write the following update for the

state vector z at s :
z(t) = Py(t: s)x(s) (8)

When clear from the context, we will simply write P, for P,(t: s).
A pointed cycle in G is a walk v;, vy, - - - v;, Vi, Where v;, is called the basepoint of the

cycle. Let _C, be the set of all pointed cycles in G. We define an equivalence relation

on the set C by saying that C;, C; € C are equivalent if they visit the same vertices in



the same cyclic order. The set of equivalence classg§ of pointed cycles are referred to
as cycles. By abuse of notation, we also denote by C the set of cycles.

To each pointed cycle C' € C, we assign a transition matrix P as in (7); when we
want to emphasize the basepoint, we write Pr; if the basepoint is v;.

Given a cycle C'in G , we can reduce the dimension of vectors in A"™~! and stochastic
matrices A € R">*"™ by removing rows and/or columns corresponding to nodes that
are not covered by C. For example, if C' = v;v9v1, then we let A € R¥™*?™ be the
principal submatrix of A obtained by keeping the first 2m rows and columns; similarly,
w € R?™ is the subvector of w obtained by keeping the first 2m entries. The cycle C,
and hence the dimension of the operation -, will always be clear from the context.

Within the state transition matrix definition (7), we can elaborate on the concept
of permutation block. Consider a pointed cycle C; to be a walk such that C; :=
eireses. Assume that the associated pre-local stochastic matrices with the edges in C}
are provided in (6). According to (7), we then have the following:

1 0 0 0 0 0
doy dy daz 0 dys dog
= - = = |ds1 d32 d3gz 0 dss ds
Foa=Aadada =0 4y dy 0 dp di ©)
ds1 dsy dsz dsa dss  dsg
|de1 de2 de3 des des  des

with d;; real numbers in the open interval (0,1). The matrix P has a permutation
block for the index set m = {1}. It is worth noting that, in contrast, none of the pre-
local stochastic matrices provided in (6), which are associated with the edges in C have
a permutation block for any index set. This observation underlines that even though
none of the pre-local stochastic matrices for the edges in C'; conform to the criteria of a
permutation block, the corresponding state transition matrix for the pointed cycle C
distinctly features such a permutation block.

3 Main Result

In this section, we introduce the main concepts and present the main result of this paper.
As already mentioned, an important concept is the one of holonomy. In differential
geometry, holonomy deals with the variation of some quantity (e.g., a vector) along
the loops in a given space. If there is no variation in this quantity after completing a
loop, the process is defined as holonomic. Otherwise, it is said to be non-holonomic. In
our convention, if there exists a finite k > 1 such that the quantity does change after
completing the loop once but comes back to the initial value after completing the loop
k-times, the process which evolves the said quantity is called finitely non-holonomic.
For our purpose, the quantity is a left weight vector, the process evolving the quantity
is the gossip process, and the space is the graph G.

Holonomy in the network. We need the following lemma to introduce the notion
of holonomy.



Lemma 1. Let C; and C; be two pointed cycles in a cycle C. If there exists a weight
vector w such that w = w(Pg;)* holds for some positive k, then there exists a weight
vector w' such that w' = w'(Pc;)* holds.

Proof. Let C = w;v;---vv; be a cycle in G. Consider the pointed cycles C; =
Vv - - - vu;v; and O = wv;u;01 - - -vev; in the cycle C. According to the statement,
it holds that:

w = w(Pc;)* where Po; = Ay,u, Avye; +  Aviur - (10)

By multiplying (10) by the matrix A, ., from the right, we get

k
'LUAvjvi - w(AvjviAvgvj T Avivl) Avjvi
= wAvjvi (szvj T Avilevjvi)k = 'LUAvjvi(PC,j)k

It is clear that the product wA,,, is a weight vector. This shows that there exists a
weight vector w’ such that w’ = w'(Pc;)* and it is equal to WA, d

Thanks to Lemma 1, we can introduce the following definition:

Definition 3.1 (Holonomic Stochastic Matrices). Let C' be a cycle in G of length
greater than 2 and w' € int A"~ be a weight vector. The w-order of C is defined as

ord,, C := min{k > 1 : w = w(Py)*},

and ord,, C' = 0 if the set is empty. The local stochastic matrices A., e € C, are said
to be w-holonomic for C if there exists a weight vector w such that ord,, C is finite
and non-zero.

Note that the definition of holonomy is independent from the basepoint of C' in .
We observe that if w = w(Pg)* holds for some positive integer k, then w = w(Py)"™*
holds for all n € N, thus making the set of integers k for which w = w(P¢)* holds of
infinite cardinality.

The local stochastic matrices A, are w-holonomic for G ii there exists a common
weight vector w so that the A.’s are w-holonomic for all C' € C of length greater than
2.

It is easy to see that the w-order of a given cycle C' can vary as a function of w. For
our purpose, we need to consider the w’s that yield the largest w-order and thus define
the order of a cycle as

ordC := sup  ord, C. (11)

w7 €int Anm—1
Now, we can define the holonomy of a gossip process as follows.
e If ord C = 0, then the process on C' is non-holonomic.
e If ord C = 1, then the process on C' is holonomic.

e If ord C' > 1, then the process on C'is finitely non-holonomic.



One can assign a (holonomy) group to the process on the cycle C if ordC' > 1. If
ord C' = 1, the cycle C' is said to have trivial holonomy since the corresponding group
has only identity operation (trivial group). If ord C' > 1, the cycle C' is said to have
non-trivial holonomy since the corresponding group is a cyclic group with an order
greater than one.

We denote the orbit set of a weight vector w around a cycle C as OF, that
is,

0% .= {w € R™|w' = w(Ps)* for a € N}. (12)

For the sake of simplicity, if a = 0, we denote the weight vector wg] ) as we = w.

Graph topology. In an undirected graph G, two nodes v; and v; are called connected
if the graph G contains a path from v; to v;. We need the following notion.

Definition 3.2 (Bridge). Let G = (V, E) be an undirected graph. Let Sg be the set
of pairs of nodes that are connected in G. Let G, be the undirected graph obtained by
removing the edge e from G, that is, G, = (V, E\ {e}). If |Sq| is strictly greater than
|Se_ |, the edge e is called a bridge (cut-edge) of G.

A graph G without a bridge is called bridgeless. We record the following result
characterizing cut-edges.

Proposition 1. An edge e in a connected graph G is a bridge if and only if no cycles
of G contain both vertices adjacent to e.

See [33, Theorem 3.3] for a proof of Proposition 1. Paraphrasing, the statement
says that every node in a connected, simple, bridgeless graph G is covered by at least
one cycle.

Derived graphs. We now focus on describing the allowed sequences of updates which
yields the consensus at the limit for the gossip process. These will be defined via paths
in what we call the derived graph of G by w, denoted by D¢ (w). We present this graph
as a geometric graph, with nodes embedded in R™™.

Definition 3.3 (Derived Graph Dg(+)). Let G = (V, E) be a matrix-weighted graph on
n nodes, with weights A. € R"™*"™ . For a weight vector w' € int A"~ the derived
graph of G generated by w, denoted by Dg(w) = (Ny, Ey), is a directed matriz-weighted
graph, possibly with multi-edges and self-loops, with Ny, = Jocz OS. For w;,w; € OF,
there exists an edge w;w; € E. if w; = w;Pe for a (pointed) cycle C; in this case, the
edge weight is Po.

Remark 1. Note that the derived graph being a geometric graph, ensures that elements
of distinct orbit sets with the same coordinates correspond to a unique vertex in the
deriwed graph.

Let e € Ew have weight Po with C' = v;v;41 -+ - vpv;. We set ¥(e) = 0041 - - - V.
We extend the domain of ¢ to the set of paths in Dg(w) according to

by Vve) =y(e) Vo(y)



for any walk v in Dg(w). Note the order reversal in the above equation, a change that is
essential for maintaining coherence. The gossip process evolves as the left multiplication
of local stochastic matrices while the paths in the derived graph Dg(w) correspond to
the right multiplication of matrices with row vectors.

We provide an example for the derivation of Dg(w).

Example 1. Consider a simple, connected, bridgeless graph with matrix weights A, €
R as depicted in Figure la. Consider the pointed cycles C = vyvvgvy, Cy =
nvsvy and O3 = vsvvgv5 in G Assume that the set of local stochastic matrices
A, e € E is w-holonomic for G and the corresponding orbit sets of the weight vector
w around each of these cycles are

o5 = {w,w(cll), e 7w(0k11—2)7w(01?—1)}
05 = {w,w(cl2), e ,w(cf_z),w(c?_l)}
Oy = {w}

where the w-order of the cycles C, Cy and C5 are kq, ko and 1, respectively.

(€] (€Y)
we! we,

(a) The graph G (b) The graph Dg(w)

Figure 1: The graph G and D (w)

We denote an edge e in the graph Dg(w) as e'gi if its weight is the matrix P, and

its starting node is wgz ), By abuse of notation, we denote a self-loop e in the graph

D¢ (w) as eg, if its weight is the matrix Pr,. Consider the path v := elgl_l Ve, Veg,
in the graph Dg(w). “Travelling” over the path v in D¢ (w) translates into the matrix
product

w(clzl_l)P01P03PC2(: w&))

Now, we can state our main theorem.

Theorem 1. Let G = (V| E) be a simple, connected, bridgeless graph on n nodes with
matriz-valued edge weights A., e € E. Let w € int A"~ be such that the set of local
stochastic matrices { A, € R"™*"™ e € E} is w-holonomic for G. Then, for any infinite
exhaustive closed walk v in Dg(w), we have that:

(1) The limit set of Py, is a finite set L.



(ii) There exists a relabeling of the nodes such that each element of L can be expressed

as -
_| P »() 0
wa) B [ 0 M¢(«,)

where }31/,(7) is a permutation matriz with rows/columns indexed by the set N2 TP,
and My is a block diagonal matriz.

(iii) The blocks Méfm of My are rank-one matrices.

We will provide an explicit description of the limit set £ and the block M:Z(v) as a
function of w in the proof of Theorem 1. The descriptions of the blocks M é}'( ,) guarantee
that they have no zero entries. It follows that if the transition matrix Ps for a cycle
C has a 1 in a row (e.g. having transpose of a standard unit vector in R"™ as a row),
then the 1 in the row either shows up in the permutation block ]—T’w(y) for a matrix in
the limit set or disappears by converging a value as a function of w in the block My ).

Note that Theorem 1 holds for a broader class of allowable sequences but we only
consider what the derived graph has generated.

4 Analysis and Proofs of Theorems

In this section, we analyze the cycles that have nonzero order and then prove Theorem 1.
The major contribution of this section is to develop a necessary condition for a cycle
to have nonzero order and to provide a proof of Theorem 1. We start with an analysis
of the spectrum of the product of local stochastic matrices and its relationship with
holonomy.

4.1 Cycles with Nonzero Order

Let St :={z € C: |z|] = 1} and let S1" := S1\{1}. The following lemma provides a
necessary condition for a cycle to have non-trivial holonomy in G.

Lemma 2. If a cycle C' has non-trivial holonomy, then the matriz Pz has at least one
eigenvalue in the set S1.

Proof. Let o(Pg) be the spectrum of the matrix Po. If C' has non-trivial holonomy,
then there exists w such that w = @w(Pc)*, for some k > 1 and @ # w(FP¢). The former
condition implies that I\ € o(P¢) such that \¥ = 1 or, equivalently, A € S* and the
latter implies that A # 1, from which the result follows. O

Motivated by the previous Lemma, we now seek to describe stochastic matrices
whose spectra have non-empty intersections with S'". Note that the spectral radius of
a stochastic matrix is 1 and its spectral circle is S?.

10



Let A be a reducible matrix. We know that A ~p B where B is of the form:

[ Bll e Blr Bl,r+1 e Blm i
0 B B R >
B = T rr+1 rm 13
Br—i—l,r-i—l 0 ( )
0 -
| 0 B |

where each principal block Bj; is either irreducible or the zero matrix [34]; we say that
the form of B given in (13) is a canonical form for reducible matrices. In the literature,
the subset of states corresponding to By, for 1 < k < r is called the k™ transient class
of matrix B and the subset of states corresponding to B, ;,+; for j > 1 is called the
4" ergodic class of matrix B.

Lemma 3. Let C be a cycle with nonzero order. Then, there exists a permutation
matriz P such that Po ~p B where B is as in (13) withr =0 and m > 1.

Proof. If the matrix P is irreducible, then the result trivially holds for P = I. If the
matrix Po is reducible, by definition, there exists a permutation matrix P such that
Po ~p B where B as in (13). The principal submatrices By for i < r act solely on
the transient states of Po. Therefore, p(By;) < 1 for i < r. This then implies that
the matrices B;;, i < r are convergent. Since ord C' > 0, the matrix B cannot have
convergent submatrices on the diagonal, from which the result follows. O

Paraphrasing, the statement says that the matrix Py is permutationally similar to a
matrix B such that it is block-diagonal with principal blocks being irreducible matrices.
Note that a permutation matrix P is an irreducible stochatic matrix. Isolating the
permutation part of P, we can further write, up to relabeling, that

B
BY 0 7 ¢

_ BOO 0 Bll =C

PcNP{ 6) MC]: “ o (14)
0 BEm] xS

where the principal submatrix BY is a permutation matrix. For convenience, we denote
the irreducible block B,;,+; in (13) by Bj.
Let 7rjc be the set of indices labeling the rows/columns of the corresponding block

matrix Bg up to relabeling through the matrix P. It then follows that we have a
partition of the index set {1,---,nm} induced by C, denoted by 7%, precisely 7€ :=
{{mf}m,}. As a matter of convention, we use the notation 7§’ interchangeably with 7z,
to refer to the largest index set among the sets that index the permutation submatrices
in Po. We will revisit the concept of the partition of the index set induced by a cycle in
the next sub-section. We now aim to better understand irreducible principal blocks of
the matrix Mo. Hence, without loss of generality, we can assume that Pg is irreducible

(e.g., only the By block is nontrivial).
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More is known about irreducible stochastic matrices. Let A be an irreducible
stochastic matrix; then there exists a unique vector p satisfying

Ap=p,p>0and |pl; =1 (15)

which is called the Perron vector. The Perron-Frobenius Theorem says that an irre-
ducible primitive stochastic matrix A converges to a scrambling matrix whose rows are
equal to the Perron vector of AT [34], which is called the row Perron vector of the
matrix A. To be more precise, limy_,o A* = 1¢" where AT¢" =¢".

We now recall an extension of the Perron-Frobenious Theorem.

Lemma 4 (Frobenius Form). For each imprimitive matriz A with index of imprimivity
h > 1, there exists a permutation matriz P such that A ~p F where F is of the form:

0 A, 0 --- 0
0 0 Ay --- 0
F=| @ : : (16)
0 0 - 0 Ay,
A 0 0 0 |

where the zero blocks, denoted by 0, on the main diagonal are square.

See [34] for a proof of Lemma 4. This is known as Frobenius Form for an irreducible
imprimitive matrix. It is easy to see that the matrix F* is a block diagonal matrix with
blocks that are primitive.

4.2 Permutation Blocks

We now aim to gain a better understanding of permutation matrices. We demonstrate
that the block matrix BY is similar to a matrix that exhibits a permutation block
structure after relabeling in (14). The following proposition establishes that the matrix
BY itself possesses a permutation block structure.

Proposition 2. If A is a stochastic matrix which is conjugate to a permutation matriz,
then A is a permutation matrix.

To prove Proposition 2, we use the following lemma.

Lemma 5. A matriz A is a stochastic matriz with A~! also a stochastic matriz if and
only if A is a permutation matrix.

See [35] for a proof of Lemma 5. As an easy corollary, we have the following lemma:

Lemma 6. A matriz A is a stochastic matriz with all its eigenvalues on the unit circle
if and only if A is a permutation matriz.

Using Lemma 5, we now prove Proposition 2:

Proof of Proposition 2. Let A= PSP~ where S € S,,, and P € GLL(n). We have that
Ak = PS¥P~1 Since S is a permutation matrix, there exists a k > 1 so that S* = I.
Putting the previous two equalities together, we get

AF = prp~' = pp-l =1.

Hence, we have A=' = A*~!. Furthermore, by Lemma 5, the matrices A~! and A are
permutation matrices. H
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4.3 Non-Permutation Blocks

Proposition 3. For an ezhaustive closed walk ~y in the derived graph Dg(w), there
exists a permutation matrixz P such that

7rg)('v) W;b(v) R ﬂ_;l’(’Y)
B 1%%“/) 0 7 ="
Byt Y
Py) ~p v _ (17)
0 B Z(v) m

where bei(v) are irreducible matrices for i > 1, the rows/columns of which are indexed
(v

by the set 7' for i > 1 and the rows/columns of the permutation matriz By, are

indezed by the set Noep) T -

To prove Proposition 3, we need to follow lemmas and definitions. First, we know
that BY is a permutation matrix for a cycle C' with nonzero order due to Lemma 2.
We need the following lemma to show that BS(()w) is also a permutation matrix:

Lemma 7. If C = AB where C € S,, and A,B are stochastic matrices order n, then
BeS, and A€ S,

Proof. We have | det(C)| = 1 since it is a permutation matrix. Thanks to the homo-
morphism of the determinant, we have the following:

det(C) = det(A) det(B)
1 = |det(A)|| det(B)]

This shows that | det(A)| and |det(B)| are 1. It implies that o(A) and o(B) lie on the
unit circle. Lemma 6 then implies that A € S,, and B € S,,. O

We need the following lemma to study properties of irreducible block matrices in
the submatrix My,).

Lemma 8. For a nonzero ord,, C, there exists a permutation matriz P such that the
matriz (Mg)% Y ~p B where B is a block diagonal matriz with blocks that are prim-
itive.

Proof. From Lemma 3 and Definition 3.1, we know that the following holds:

D _\or BOO O ordu © or or
['wpa UJM](PC) dw @ - ['wpa wM] [ OC MC :| = [wP(BgO) dwC? wM(MC) du C] = [wp’ UJM]
N e’ | S —

up to relabeling. From the definition of Perron vector and (x), we know that ord,, C'is
a multiple of the index of imprimivity of all block matrices BY for j > 1, from which
the result follows. O
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For convenience, we denote the matrix (Mg)9«¢ by (Mg)®. To prove Proposi-
tion 3, we need to consider the graph of a matrix. Let A be a matrix. Let G4 be a
directed graph such that the transpose of its adjacency matrix is equal to the matrix
obtained by replacing non-zero entries of the matrix A by one. The directed graph G4
is called the graph of A.

For an irreducible matrix, the period of the matrix is equal to the index of imprim-
ivity of the matrix [36]. Then, one can easily prove the following corollary to Lemma 8:

Lemma 9. The graph of the matriz (Mc)® is the union of the graphs of the submatrices
(BE)™, each of which is strongly connected with self-arc at every node for j > 1.

We need to introduce the composition of the graph of matrices. Let G4 and Gp
be two directed graphs with the same node set V. The composition of G4 with Gg,
denoted by Gpg o Gy4, is a digraph with the node set V' and the edge set defined as
follows: v;v; is an edge of Gg o G4 whenever there is a node vy such that v;v; is an
edge of G4 and vv; is an edge of Gp [5]. We have the following Lemma based on the
composition definition:

Lemma 10. For any sequence of stochastic matrices Ay, Ag, -+, Ax which are all of
the same size, we have that Ga,...a,4, = Ga, 0---0Gy, 0 Gy,

See [22, Lem. 5] for a proof of Lemma 10. One can easily prove the following lemma:

Lemma 11. If the graphs G, and Gpg have self-arcs at every node, then the union of
the arc sets of G4 and Gpg is a subset of the arc set of the graph G,p

The condition of the Lemma says that A and B have all non-zero diagonal entries.
Using the preceding lemmas, we now prove Proposition 3:

Proof of Proposition 3. By construction, a cycle in Dg(w) has no chord. Hence, it is
guaranteed that any exhaustive walk v in Dg(w) is a concatenation of all the cycles
and the self-loops in Dg(w). Let C, and C}, be cycles in G with w-orders k, and
ky, respectively. It is sufficient to check the particular case for v. Assume that v :=
es, € - -e'é‘;_leéb . -elg; ++-ege~'. We map the walk 7 to a sequence of edges in G via

W(.):
W) =ChevCo-CheeCyCy-Cly .

|0 105p| |04

The matrix P is the product of the local stochastic matrices associated with e € C.
C
For convenience, we denote the matrix P'CO”‘ by P#. Then, we have the following:

Pw('v):Pg

a

Pg, PE (19)

Let 7% and 7% be the partition of the index sets induced by the cycles C, and Cj,
respectively. Due to Lemma 8 and (19), if the partitions 7% and 7% are the same, the
result trivially holds and 7%() = 7% _ It remains to prove the result if the partitions
7% and 7% are different.

First consider the permutation block in each matrix P# and Pg . Assume that for
some index 4, i € 75, but i ¢ 75", the permutation index set for the matrix PE P&
does not contain the index ¢ due to Lemma 7. Owing to the above, the corresponding
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matrix Py, only has permutation matrices corresponding to columns/rows associated
with the states indexed by the intersection of the permutation index sets of the visited
cycles by (), which is 7rg’ ™ = Ncep( TS - It proves the first part of the proposition.
It remains to show the product of a set of irreducible blocks indexed by some elements
in 7% and 7% produces a new irreducible block indexed by an element in 7% under
some conditions.

We first assume that the entries of the weight vector w are distinct. Then, it is
easy to see that ord, C' is a multiple of the order of BY. This implies that (BY)v
is the identity, the graph of which consists of self-arcs at every node. Consider the
graphs Gpgb and Gpéva, Lemma 11 implies that they have self-arcs at every node. Due
to Lemma 9 and Lemma 10, the graph G Py P, has a strongly connected component for

aC = 7rz.C“ U 7rjcb if 7TZ-C“ N 7chb = () for some k,i,j. Owing to the above,
one can easily find the elements of partition 7% of the index set induced by () by

induction and each element W;f(w labels a strongly connected component in Gp, . It

an index set

then follows that each block BJZ’(‘CV), which is indexed by the set w,if(“’), is an irreducible
block [22, Thm. 6.2.44] for k£ > 1.

We denote by Wre the entries of the weight vector w which are indexed by the set 7§’
for a cycle C'. Now, consider the case when some of the entries of the weight vector w
are equal. On the one hand, if the corresponding indexes to these entries are not in the
set 7§, then one can easily show that ord,, C' is a multiple of the order of permutation
matrix BY. Therefore, (BY)" is identity. The remaining part of the proof will then
be similar to the above. On the other hand, consider the case when the corresponding
indices to these entries are in the set 75. By definition of the orbit set (12), the matrix
(Po)™ is in the stabilizer of weight vector w. But, it does not imply that ord, C' is a
multiple of the order of the permutation BY. For example, if all entries of the vector
Wre are equal, then any permutation matrix with the proper dimension will be in the
stabilizer of the vector w c. This implies that the matrix (BX)“ is not necessarily the
identity matrix, but it includes an identity block labeled by the indexes that correspond
to the distinct weights in w,c. This observation leads us to the conclusion that the
remaining part of the proof follows a similar pattern to the one discussed earlier. With
this, we conclude the proof. O

To elaborate on Proposition 3, consider two different exhaustive closed walks ~;
and 7, in D, (G). Note that the partitions induced by ¥ (7;) and 1(72) are the same,
but the corresponding block matrices BZZ(%) and BZ(W) are not necessarily the same.
Indeed, the partition of the index set induced by an exhaustive walk can be found by
intersection and union operation on the index sets, which are associative. This implies
that the appearance order of the cycles in the exhaustive walk does not affect the
corresponding index sets. We then conclude that the block structures of the matrices
Py(y,) and Py, are the same up to relabeling. We can thus denote the elements of the
corresponding partition by 7¢ (e.g. 7¢ = 7¥1)). On the other hand, the order in which
cycles are traversed affects the order in which local stochastic matrices (which are not
necessarily commutative in our work) are multiplied, and thus the block matrices are
not necessarily equal.

For this section, we continue with Example 1.
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Example 1 (Cont.). Assume that the number of states for each node m is 3 in the
graph shown in Figure 1a; then z(t) € R?!. Consider the cycles C and C,. Assume
that we have the following partition of the index set:

79 = {{2,4,7,10,11,---,20,21}, {1, 3,5}, {6,8,9}} (20)
- ~ o N, e e, o’
o) o) o3}
o 1 T
7 = {{4,5,6,7,8,10,11,16,17,---,20,21},{12,13},{1, 2}, {14, 15} }. (21)
~ ~ N—_—— Y~ ——
Co Co Co Ca
) 1 ) T3
Consider the partition of the index set induced by C>C;. We observe that the sets
7" and 75 have a nonempty intersection. Hence, the set 72" := 78" U 52 is an

element of the partition 72¢1. On the other hand, the index sets 75" and 75> labels
the maximal permutation block in the corresponding matrix. From Proposition 3, the
set 7529 = 75" N w§ is an element of the partition of the index set 7¢2¢1. Then, we

obtain the following:

70 = {{4,7,10,11,16,17,---,20,21},{1,2,3,5},{6,8,9}, {12,13}, {14, 15} } (22)
. ~ V ——— —— ——

7Tc\;cl _C2Cy _C2Cy O30y _C2C1
0 1 2 3 4
U
4.4 Proof of Theorem 1
For a cycle C' in GG with non-zero order, we define,
o ; : JJ
€c = 1grjl'lgnm(mm BY) (23)
where BY is the irreducible block in the matrix Mg (14). We then set:
‘= mi . 24
I 2
The coefficient of ergodicity of a stochastic matrix A € R"*" is [37]
1 n
u(A) = 3 Ir%z}xz laix — ajil. (25)

It is clear that u(A) < 1 for any stochastic matrix A. The following inequality holds
for any two stochastic matrices B and C' [38],

IBClls < n(B) €5 (26)
For any scrambling matrix A, we have the following inequality:

pu(A) <1 —min(A). (27)
We now need the following lemma:

Lemma 12. The product of any set of | > |5] irreducible n x n stochastic matrices

with positive diagonal entries is a scrambling matriz.
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See [5, Lem. 5] for a proof of Lemma 12.

Definition 4.1 (Spanning Sequence). Let G = (V, E) be a simple, undirected graph. A
finite sequence of edges of G is spanning if it covers a spanning tree of G. An infinite
sequence of edges is spanning if it has infinitely many disjoint finite strings that are
spanning.

Lemma 13. Let G be a bridgeless,simple, connected graph. For an exhaustive walk ~ in
D¢ (w) where the set of local stochastic matrices {A. € R"™ "™ e € E} is w-holonomic
for G, the sequence of edges 1(7) is a spanning sequence of edges in G.

Proof. By Definition 3.1, the set OF is non-empty for any cycle C. Hence, there exists
an edge, say e, in Dg(w) which has the matrix-weight Po. The exhaustive walk «y visits
all edges in Dg(w). Without loss of generality, assume that v = ~, V e V 7, where 7,
and 7, are walks in Dg(w); we have that ¥(y) = ¥(y) V C V ¥(7,). This shows that
the edges in any cycle C' in G are visited. Because G is bridgeless, every edge in GG
is covered by at least one cycle. This implies that every edge in G is visited by the
sequence of edges 1(7), which concludes the proof. O]

With the auxiliary results above, we are now in a position to prove Theorem 1.

Proof of Theorem 1. Let w € int A"™~! be a weight vector. Recall that the set of local
stochastic matrices { A, € R"™*"" ¢ € E} is assumed to be w-holonomic for G. Let v
be an infinite exhaustive closed walk in D¢ (w).

Proposition 3 shows that the block of Py, indexed by 5 .= Neepn TS is a

permutation matrix. Due to Lemma 13, all cycles in G are covered by (), which

implies that Wép ™ = mcecWOC = 7§. Consequently, by relabeling the states so that the

submatrix indexed by 7§ is in the upper-left corner of Py(y), we have proven the first
part of assertion (7i) in Theorem 1.
It remains to characterize the limit set £. Let I' be the set of all finite exhaustive

walks in Dg(w). Let Sp be the set of permutation matrices Bd}(v for all v; € I'. Owing

to the above paragraph, each BO%V is of the same dimension |7§|. The set Sp C Sixo) 18

obviously finite; let K be the subgroup generated by the elements of Sp. We can write
an infinite exhaustive closed walk ~ as the concatenation of finite exhaustive closed
walks ;, i > 1, in Dg(w). We then have Py, = By Bty B,y -+ Which
shows that Py, € K.

We now show that, given a weight vector w, the block My, in Theorem 1 is uniquely
given. This implies that there exists an injection between the limit set £ > Py, of
the process and the set I, which proves that the limit set is finite. To proceed, recall
that Proposition 3 states that the matrix My, consists of principal block matrices
that are irreducible with dimensions |7¥| for i@ > 1 and are denoted by MZZ(V). Let

lg = max;(|7E]). Let 0 :=ty < t; < ty--- be a monotonically increasing sequence
such that every string ¢ (y(tx : ty+1)) for k > 0, has |%¢] exhaustive walks in Dg(w).
Since || My()|ls is non-increasing by (26), it has a limit for |y| — co. We now show
that || My, |s is 0 for i > 1.
Lemma 12 implies that Mf/fw (bt
bound (24) into (27), we have the following inequality (M} Z(

) is a scrambling matrix. Plugging the lower
< (1—¢€). Then,

Py (ty: tk+1))) -
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we can use this inequality in (26) for each block matrix M o 1)) to obtain:

Yttt
B (| M | < Jim (1 —€) H St 0) HS
<(1—ef =
which implies that limy_ H w('y :0) H = 0. We conclude using [37] that M Dyt 0))

converges to a rank-one matrix, say MZ;(V) = 1p, for some vector p; € RI™F1. This
establishes asymptotic convergence in the assertion (iii) in Theorem 1.
It remains to provide an explicit characterization of the vector p, such that w( ) =

1p/ as a function of the weight vector w. We denote by w the entries of the weight
vector w which are indexed by the set U;>;7&. By construction of the derived graph
Dg(w), the closed walk ~ induces the mapping:

W = WMy (= ).
Then, we have the following up to relabeling,

11
Mdf(“/) Ip{

From the block structure (28), we have that,

[w]jeﬂc

i = “ where o; := E Wj.

(%)

; G
JE™;

Since w is a weight vector by definition, we know that a; € (0, 1]. This then shows that
p; has no zero entry. 0

5 Summary and outlook

In this paper, we have investigated the weighted average consensus problem for a gos-
siping network of agents with vector states. We have introduced the concept of w-
holonomy for a set of stochastic matrices, which helped us to investigate the existence
of non-trivial, finite holonomy groups in the gossip process. The allowable sequences
of updates in the gossip process were obtained as closed walks in the so-called derived
graph Dg(w), in that any infinite exhaustive closed walks in Dg(w) could be mapped
to an allowable sequence of updates for the gossip process. Such sequences could be
implemented in a decentralized manner, and we have shown that the corresponding
infinite product of stochastic matrices converges to a finite limit set, whose elements
we have explicitly characterized.

Our results have established a unified framework that connects the methodologies
presented in [5] and [4]. Indeed, on the one hand, we have extended the framework of [5]
by allowing gossip processes that display non-trivial holonomy groups, which results in
a finite limit set for the process (as stated in Theorem 1). This is in contrast to [5,
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Thm. 1], where the limit set is a singleton. As a drawback of the existence of non-trivial
holonomy groups, our results require following an allowable sequence of updates in the
gossip process, whereas the order of the gossiping pairs does not matter in [5, Thm. 1].

On the other hand, in [4], allowable sequences have been found through a derived
graph, (see [4, Definition 2.3]) nodes of which correspond to three nodes in the gossip
graph that communicate simultaneously. This approach, motivated by the design of
secure protocols, results in allowable sequences consisting of an infinite concatenation
of triangles within the communication graph. In our work, we have developed a different
perspective. Each node in our derived graph corresponds to an element of the orbit
sets of the weight vector around a cycle. Consequently, our allowable sequences consist
of the concatenation of cycles in the communication graph. It is worth noting that our
approach requires a bridgeless communication graph, while the methodology presented
by [4] requires a triangulated Laman graph.

The present work can be extended in several directions. Among others, we focus
here on algorithm design, which comprises two parts. The first is to characterize the
set of local stochastic matrices that yield a predefined consensus weight for agents
with vector-valued states. It is relatively straightforward to use the results developed
in this paper to develop a method that yields the desired local stochastic matrices
given that the communication graph is bridgeless. Removing this topological constraint
requires further research. This leads us to the second aspect, which is to remove the
requirement of bridgeless graphs. To understand what it entails, we first note that
the requirement can be traced back to the definition of w-holonomy involving cycles
in G. Thus, one approach to remove the requirement is to modify the definition of
w-holonomy to consider paths rather than cycles in the communication graph.

Namely, for a path ¢, we would redefine the orbit set in (12) as Of, = {wéa) €

]R"m|wéa) = w(P;)* for a € N} and state that if the set Of has finite and non-zero
cardinality, then set of local stochastic matrices {A. € R">*"™ Ve € (} will be w-
holonomic for (. With this modification, we can still employ the derived graph approach
to characterize the allowable sequences. However, this introduces a significant challenge:
the allowable sequences of updates cannot be followed in a decentralized manner (at
least in an obvious manner). The ability of gossip processes to operate without a
central authority is however crucial. This highlights the need to further understand the
connection between topological constraints on G, and the development of decentralized
update rules.
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