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Abstract

We consider information update systems on a gossip network, which consists of a
single source and n receiver nodes. The source encrypts the information into n distinct
keys with version stamps, sending a unique key to each node. For decryption in a (k, n)-
Threshold Signature Scheme, each receiver node requires at least k + 1 different keys
with the same version, shared over peer-to-peer connections. We consider two different
schemes: a memory scheme (in which the nodes keep the source’s current and previous
encrypted messages) and a memoryless scheme (in which the nodes are allowed to
only keep the source’s current message). We measure the “timeliness” of information
updates by using the version age of information. Our work focuses on determining
closed-form expressions for the time average age of information in a heterogeneous
random graph. Our work not only allows to verify the expected outcome that a memory
scheme results in a lower average age compared to a memoryless scheme, but also
provides the quantitative difference between the two. In our numerical results, we
quantify the value of memory and demonstrate that the advantages of memory diminish
with infrequent source updates, frequent gossipping between nodes, or a decrease in k
for a fixed number of nodes.

1 Introduction

In a peer-to-peer sensor or communication network, information spreading can be catego-
rized into single-piece dissemination (when one node shares its information) and multicast
dissemination (when all nodes share their information) [1, 2]. But some applications lie
between two categories, in which a node needs to collect a multitude of messages or ob-
servations generated at the same time to construct meaningful information. For example,
consider a sensor network measuring the Time of Flight (ToF) of a signal coming from
a target object, where gathering at least three simultaneously generated observations is
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Figure 1: A gossip network consisting of a source and n = 6 receiver nodes. Source encrypts
status updates and sends them to nodes.

crucial to detecting the relative position of the target object using the Time Difference of
Arrival (TDoA) technique [3]. For another example, consider a peer-to-peer communica-
tion network with unsecured communication channels; the information can be decomposed
into n distinct pieces and spread throughout the network. A node in the network can only
reconstruct the information if it collects k + 1 distinct pieces of the actual information.
This collaborative approach enhances the reliability and security of information exchange
in dynamic and distributed environments [4]. Such a scheme is known as (k, n)-Threshold
Signature Scheme (TSS) [5]. For example, the information source can apply Shamir’s se-
cret sharing method [6] or Blakley’s method [7] on the information to put it into n distinct
keys such that any subset of n keys with k+1 cardinality would be sufficient to decode the
encrypted message. Motivated by these applications, we consider in this work an informa-
tion source that generates updates and then encrypts them by using (k, n)-TSS. The source
is able to send the encrypted messages to the n receiver nodes instantaneously. Upon re-
ceiving these updates, the nodes start to share their local messages with their neighboring
nodes to decrypt the source’s update. The nodes that get k different messages of the same
update from their neighbors can decode source’s information. We consider two different
settings: a memory scheme where the nodes are able to keep the source’s current and pre-
vious encrypted messages and a memoryless scheme where the nodes are allowed to keep
only the source’s current message. For both of these settings, we study the information
freshness achieved by the receivers as a result of applying (k, n)-TSS.

In order to measure the freshness of information in communication networks, age of in-
formation (AoI) has been introduced as a new performance metric [8]. Since then, AoI has
been considered in queueing networks [9], energy harvesting problems [10, 11], caching sys-
tems [12], remote estimation [13], distributed computation systems [14], and RF-powered
communication systems [15]. A more detailed review of the literature on AoI can be found
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in [16]. The traditional age metric increases linearly over time until the receiver gets a
new status update from the source. However, if the information at the source does not
change frequently, although the receiver may not get updates from the source for a long
time, the receiver may still have the most up-to-date information prevailing at the source.
The traditional age metric is said to be source-agnostic, meaning that it does not consider
the information change rate at the source. Considering this problem, new source-aware
freshness metrics such as the version age of information [17, 18], the binary freshness [19],
and age of incorrect information [20] have been considered recently which can achieve
semantic-oriented communication [21].

In the earlier works on AoI, age has been studied for simple communication networks
where the information flows through directly from the source, or other serially connected
nodes (as in multi-hop multi-cast networks [22]). The development of the stochastic hybrid
system (SHS) approach in [23] paves a new way to calculate the average age in arbitrarily
connected networks. In particular, reference [17] considers a setting where in addition to
source sending updates to the receiver nodes, nodes also share their local updates through
a gossiping mechanism to improve their freshness further. Inspired by [17], reference [24]
improves the AoI scaling by using the idea of clustered networks and [25] studies scaling of
binary freshness metric in gossip networks. In the aforementioned works in [17, 24, 25], age
scaling has been considered in disconnected, ring, and fully-connected symmetric gossip
networks. Different from these symmetric gossip networks, age scaling has been studied in
a grid network in [26]. Reference [27] optimizes age in a gossip network where updates are
provided through an energy harvesting sensor. In gossiping, as the information exchanges
happen through comparison of time-stamp of information, the gossip networks are vulner-
able to adversarial attacks. The timestomping, i.e., changing time-stamp of the updates
to brand the outdated information as fresh, has been studied in gossip networks in [28].
The reliability of information sources [29], the binary dynamic information dissemination
[30], information mutation and spread of misinformation [31] have been studied in gossip
networks. More recent advances of AoI in gossip networks can be found in [32].

In all these aforementioned works, the source sends its information to gossip nodes
without using any encryption. For the first time, in this work, we consider the version age
of information in a gossip network where the source encrypts the information via (k, n)-
TSS. We study two different settings where (i) the nodes have memory, in which case
they can hold the current and also the previous keys received from the source, and (ii)
the nodes do not have memory, in which case they can only hold the keys from the most
current update. For both schemes, we measure the freshness of the information through
k-keys version age of information.

In this work, we first derive the relations necessary to obtain closed-form expressions
for the time average of k-keys version age for an arbitrary non-homogeneous network (e.g.,
independently activated communication channels). Then, in the numerical results, we
show that the time average of the k-keys version age for a node in both schemes decreases
as the edge activation rate increases, or as the number of keys required to decode the
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information decreases, or as the number of gossip pairs in the network increases. We show
that a memory scheme yields a lower time average of k-keys version age compared to a
memoryless scheme. However, the difference between the two schemes diminishes with
infrequent source updates, frequent gossip between nodes, or a decrease in k for a fixed
number of nodes n.

2 System Model and Metric

We consider an information updating system consisting of a single source, which is labeled
as node 0, and n receiver nodes. The information at the source is updated at times
distributed according to a Poisson counter, denoted by N0(t), with rate λs. We refer to the
time interval between ℓth and (ℓ+1)th information updates (messages) as the ℓth version
cycle and denote it by U ℓ. Each update is stamped by the current value of the process
N0(t) = ℓ and the time of the ℓth update is labelled τℓ once it is generated. The stamp ℓ
is called version-stamp of the information.

We assume that the source is able to instantaneously encrypt the information update
by using (k, n)-TSS once it is generated. To be more precise, we assume that the source
puts the information update into n distinct keys and sends one of the unique keys to
each receiver node at the time τℓ, instantaneously. Once a node gets a unique key from
the source at τℓ for version ℓ, it is aware of that there is new information at the source.
Each node wishes its knowledge of the source to be as timely as possible. The timeliness
is measured for an arbitrary node j by the difference between the latest version of the
message at the source node, N0(t), and the latest version of the message which can be
decrypted at node j, denoted by Nk

j (t). This metric has been introduced as version age of
information in [17, 18]. We call it k-keys version age of node j at time t and denote it as

Ak
j (t) := N0(t)−Nk

j (t). (1)

Recall that in the (k, n)-TSS, a node needs to have k + 1 keys with the version stamp
ℓ in order to decrypt the information at the source generated at τℓ. Since the source sends
a unique key to all receiver nodes, a node needs k additional distinct keys with version ℓ
to decrypt the ℓth message. We denote by ~G = (V, ~E) the directed graph with node set
V and edge set ~E. We let ~G represent the communication network according to which
nodes exchange information. If there is a directed edge eij ∈ ~E, we call node j gossiping
neighbor of node i. We call a communication network (k, n)-TSS feasible if the node 0 has
out-bound connections to all other nodes and the smallest in-degree of the receiver nodes
is greater than k. We illustrate in Fig. 1 a (2, 6)-TSS feasible network.

In this work, we consider a (k, n)-TSS feasible network, in which, nodes are allowed
to communicate and share only the keys that are received from the source with their
gossiping neighbor. The edge eij , which connects node i to node j, is activated at times
distributed according to the Poisson counter N ij(t), which has a rate λij . All counters
are pairwise independent. Once the edge eij is activated, node i sends a message to node
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Figure 2: Sample timeline of the source update and the edge eij activation. The last
activation of eij is marked by (•) and the previous activations of eij are marked by (◦).

(a)

(b)

Figure 3: Sample path of the k-keys version age (a) Ak(t) for a node with memory and (b)
Āk(t) for a node without memory.

j, instantaneously. This process occurs under two distinct schemes: with memory scheme
and memoryless scheme.

In the memory scheme, nodes can store (and send) the keys of the previous updates.
For example, if the edge eij is activated at t, node i sends node j all the keys that the
source has sent to node i since the last activation of N ij(t) before t. For the illustration
in Fig. 2, node i sends the set of keys with the versions {ℓ, ℓ + 1, ℓ + 2} to node j in the
memory scheme. Note that this can be implemented by finite memory in a finite node
network with probability 1; we will provide below the distribution of the number of keys in
the message. In the memoryless scheme, nodes have no memory and only store the latest
key obtained from the source. If the edge eij is activated at t, node i sends node j only
the last key that the source sent to node i before t. Referring again to the illustration in
Fig. 2, node i in this case sends only the key with the version {ℓ+ 2} to node j.

Fig. 3(a) and Fig. 3(b) depict the sample path of the k-keys version age process Ak(t)
(resp. Āk(t)) for a node with memory (resp. without memory). It is worth noting that we
associate the notation ·̄ with the memoryless scheme. It is assumed that edge activations
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and source updates occur at the same time in both schemes in the figures. In the memory
scheme, we define the service time of information with version ℓ to an arbitrary node j,
denoted by Sℓ

j , as the duration between τℓ and the time when node j can decrypt the
information with version ℓ, as shown in Fig. 3(a). In the memoryless scheme, a node can
miss an information update with version ℓ, in contrast to the memory scheme, if it cannot
get k more distinct keys before the next update arrives at τℓ+1. Thus, for a node without
memory, we define Sℓ

j as the duration between τℓ and the time when the node can decrypt
information with a version greater than or equal to ℓ. In Fig. 3(b), the node misses the
information with versions ℓ and ℓ+1. It can only decode the information with version ℓ+2.
Therefore, the service times Sℓ and Sℓ+1 end at the same time as the service time Sℓ+2

ends.
Let ∆k

j (t) be the total k-keys version age of node j, defined as the integrated k-keys

version age of node j, Ak
j (τ), until time t. For both schemes, the time average of k-keys

version age process of node j is defined as follows:

∆k
j := lim

t→∞

∆k
j (t)

t
= lim

t→∞

1

t

∫ t

0
Ak

j (τ)dτ. (2)

We interchangeably call ∆k
j the version age of k-keys TSS for node j. If nodes in the

network have no memory, we denote the version age of k-keys TSS for node j by ∆̄k
j .

3 Age Analysis

In this section, we first introduce the main concepts that will be useful for deriving age
expressions and then provide closed-form expressions for the version age of k-keys TSS
scheme with and without using the memory, which are the main results of the paper.

We first focus on the order statistic of a set of random variables. Consider a set of
random variables Y = {Yi}

n
i=1. We denote the kth smallest variable in the set Y by Y(k:n).

We call Y(k:n) the kth order statistic of n-samples (k = 1, 2, · · · , n) in the set Y. For a

set of i.i.d random variables {Yi}
n
i=1 from an exponential distribution with mean 1

λ
, the

expectation of the kth order statistic Y(k:n) is given by [33]:

E[Y(k:n)] =
1

λ
(Hn −Hn−k), where Hn =

n
∑

j=1

1

j
. (3)

Let N+
j = {i ∈ V, eij ∈ ~E} be the set of nodes with out-bound connections to node j;

denote its cardinality by nj. Let Xij be the times between successive activations of the
edge eij . Then, Xij is an exponential random variable with mean 1/λij . Let Xj be the set
of random variables Xij , ∀i ∈ N+

j . Let Ij be a set of indices that label the elements of the
set Xj. With this notation, we can express the cumulative density function (c.d.f.) of the
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kth order statistic of the set Xj as follows:

Fk(x,Xj)=

nj
∑

i=k

∑

Si

(

i
∏

ℓ=1

Fmℓ
(x)

nj
∏

ℓ=i+1

(1− Fmℓ
(x))

)

, (4)

where the summation Si extends over all permutations (m1,m2, · · · ,mnj
) of the set Ij

[33]. We denote the kth order statistic of the set Xj by X(k:nj).

3.1 Nodes with Memory

In this subsection, we first compute the service time of the information to a node with
memory. Then, we provide the closed-form expression for the version age of k-keys TSS,
∆k

j , for any node in a (k, n)-TSS feasible network.

Lemma 1. If nodes have memory, then the service time of the information with version ℓ
to node j is the kth order statistic of the set of exponential random variables Xj.

Proof. We denote the set of the first activation times of edges that are connected to the node
after τℓ by X ℓ. For the case X ℓ

(k:nj)
≤ U ℓ, the result trivially follows from the definitions.

Consider the case X ℓ
(k:nj)

> U ℓ. By definition, a new status update arrives at all nodes

at τℓ+1(= τℓ + U ℓ). However, the structure of a message sent after τℓ+1 from a node to
another node ensures that it has the key with version stamp ℓ. Therefore, the service time
for a status update is also X ℓ

(k:nj)
(regardless of the fact that a new update arrived).

We are now in a position to state the main theorem.

Theorem 1. Let ~G be a (k, n)-TSS feasible network. Consider an arbitrary node j in ~G.
The version age of k-keys TSS for node j with memory is:

∆k
j =

E[X(k:nj)]

E[U ]
w.p. 1. (5)

where U is the interarrival time for the source update.

See Appendix 6.2 for the complete proof of Theorem 1. We outline here the basic steps
involved. Let T := {τl}

∞
l=0 be the monotonically increasing sequence of times when the

status updates occur at the source node 0, with τ0 :=0. Let T 1={τℓa}
∞
a=0 be a subsequence

of T such that Ak(τℓa) = 1. In words, the subsequence T 1 is the sequence of information
update times which the node can decrypt the current status update beforehand. For
example, recalling Fig. 3(a), the node can decrypt the current status update before a new
one arrives at τℓ and τℓ+3. Therefore, the information update times τℓ and τℓ+3 are in
T 1 for the given sample path. Let Ra be the integrated k-keys version age of a node
between times τℓa and τℓa+1

. One can easily see that a pair of (Ra, Rb) for any a 6= b is
i.i.d. As a corollary of Lemma 1, recalling Fig. 3(a), the sum of service times between two
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consecutive elements of T 1 corresponds to the sum of three different shaded areas, that is,
Ra= Sℓ+Sℓ+1+Sℓ+2 and the elapsed time between two consecutive elements of T 1 is equal
to U ℓ+U ℓ+1+U ℓ+2. From the Reward Renewal Theorem (see Appendix 6.1), the result
follows. One can easily obtain an explicit form of ∆k by using the c.d.f. in (4).

The case of a fully connected directed graph ~G on n + 1 nodes (including the source
node) with λij =

λe

(n−1) for all edges eij in
~E, is called scalable homogeneous network and λe

is the gossip rate. In a scalable homogeneous network, the processes Ak
j (t) are statistically

identical for any node j. Thus, we denote the set Xj by X for any node j ∈ V .

Corollary 1.1. For a scalable homogeneous network, the version age of k-keys TSS for a
node with memory is:

∆k =
E[X(k:n−1)]

E[U ]
=

(n − 1)λs

λe
(Hn−1 −Hn−1−k) w.p. 1.

Corollary 1.2. For a finite k and a scalable homogeneous network with a countable mem-
ory, we have the following scalability result:

lim
n→∞

∆k =
kλs

λe
w.p. 1.

We now elaborate on the number of keys in the message that is sent over an edge. To
this end, let Mi

j be the number of keys in the message that is sent over the edge eij . In
each update cycle, either the source’s update takes place before the edge’s activation in
which case Mi

j increases by 1 or the edge is activated before a source update in which

case node i sends all the keys to node j, and thus Mi
j reduces to 0. Due to [34, Prob.

9.4.1], Mi
j has a geometric distribution with success probability

λeij

λeij
+λs

. It shows that the

expected number of keys in the message between nodes rises as the source rate update λs

increases or the edge activation rate λeij decreases. In the following subsection, we analyze
the memoryless scheme.

3.2 Nodes without Memory

In this subsection, we provide a closed-form expression for the version age of k-keys TSS
for any node without memory, ∆̄k

j , in a (k, n)-TSS feasible network.

Theorem 2. Let ~G be a (k, n)-TSS feasible network. The version age of k-keys TSS for
node j without memory is:

∆̄k
j =

E[min(X(k:nj), U)]

Pr(X(k:nj)≤U)E[U ]
w.p. 1 (6)

where U is the interarrival times for the source update.
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See Appendix 6.3 for a proof of Theorem 2. One can easily compute ∆̄k
j and Pr(X(k:nj)≤

U) by using (4). We can focus on the statement of Theorem 2. In the memoryless scheme,
a node needs to get at least k different keys with version ℓ before τℓ+1 so that it can decrypt
the status update generated at τℓ. To be more precise, a node can decode the status update
at τℓ if the event E = {X(k:nj)≤U ℓ} happens, otherwise, it misses. Then, Theorem 2 says
that if the event E happens in an update cycle, the accumulated age in the update cycle
is X(k:nj), otherwise, it is U ℓ. The expected time of the generation of two consecutive
status updates that can be decrypted at node j is equal to Pr(E)E[U ] (see Appendix 6.3
Lemma 2).
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Figure 4: (a) ∆k and (b) ∆̄k as a function of λe on a scalable homogeneous network when
λs = 10. Solid lines in Fig. 4(a) show theoretical ∆k while solid lines in Fig. 4(b) show
theoretical ∆̄k. Simulation results for (2, 6),(2, 8),(4, 6),(4, 8) TSS are marked by �, •,�,×,
respectively.

Corollary 2.1. For a scalable homogeneous network, the version age of k-keys TSS for
an individual node without memory is:

∆̄k =

λs

λe+λs
+

k
∑

j=2

(

λs

λeB(n,j)+λs

j−1
∏

i=1

λeB(n,i)
λeB(n,i)+λs

)

Pr(E)
w.p. 1 (7)

where the event E is {X(k:n−1) ≤ U} and B(n, i) = (n−i)
(n−1) .

See Appendix 6.4 for a proof of Corollary 2.1.
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Figure 5: ∆k as a function of n when k = 10 and λs = 15. Solid lines show the theoret-
ical ∆k while simulation results for λe = {50, 100, 150} selections are marked by �, •,×,
respectively. Dashed lines show the theoretical asymptotic value of ∆k on n.

4 Numerical Results

In this section, we provide numerical results for the version age of (k, n)-TSS with and
without memory schemes. In particular, we compare empirical results obtained from sim-
ulations to our analytical results.

In the first set of results, we consider a scalable homogeneous network. Fig. 4 depicts
the simulation and the theoretical results for both ∆k and ∆̄k as a function of gossip rate
λe when λs = 10. The simulation results for ∆k and ∆̄k align closely with the theoretical
calculations provided in Thm.1 and Thm. 2, respectively. In both schemes, we observe
that the version age of k-keys TSS for a node increases with the rise in the gossip rate λe,
while keeping the network size n and λs constant. Fig. 4(a) also depicts the version age
of k-keys TSS as a function of the pair (k, n). We observe, in Fig. 4(a), that ∆k increases
with the growth of k for a fixed λe and n and it decreases as n increases for fixed λe and
k. On the one hand, Fig. 4(b) confirms that the earlier observation regarding ∆k and its
connection with network parameters λe and (k, n) also holds true for ∆̄k. On the other
hand, we observe, in Fig. 4, that the version age of k-keys TSS in the with memory scheme
∆k is less than the version age of k-keys TSS in the without memory scheme ∆̄k for the
same values of λe, λs and (k, n). Fig. 5 depicts ∆k as a function of the number of the nodes
n for various gossip rates λe. We observe, in Fig. 5, that ∆k converges to kλs

λe
as n grows.

It aligns with Cor. 1.2.
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Figure 6: The smallest gossip rate λe such that |∆k − ∆̄k| ≤ ε as a function of k for
fixed n = 30 and λs = 15. Solid line, dashed line and dotted-dashed line show λε for
ε = 10−2, ε = 10−1 and ε = 1, respectively.

5 Discussion on The Value of Memory

To quantify the value of memory in a network, we define the memory critical gossip rate of
a (k, n)-TSS network for a margin ε, denoted by λε(k, n), as the smallest gossip rate λe such
that |∆k− ∆̄k| ≤ ε. Fig. 6 depicts the memory critical gossip rate of a (k, 30)-TSS network
for different margins as a function of k. We first observe, in Fig. 6, that the memory critical
gossip rate λε(k, n) increases as the margin ε decreases, and it exponentially increases as k
increases for fixed n. These observations show that ∆̄k approaches ∆k as λe increases or k
decreases. These results align with Cor. 1.1. Consider the event E :={X(k:n−1) ≤ U} (event
that a node can decrypt the status update before a new status update arrives); one can
easily see that the probability of event E converges to 1 as the gossip rate λe increases or k
decreases for fixed n. It implies that the service time of any status update approaches the
random variable X(k:n−1) as Pr(E) goes to 1. In this case, by construction, the expectation
E[1{Ec}U ]→0 and the expectation E[1{E}X(k:n−1)]→E[X(k:n−1)] in (6). It implies that the

version age of k-keys TSS for a node without memory ∆̄k approach to the version age of
k-keys TSS for a node with memory ∆k as Pr(E) goes to 1.

6 Conclusion

We have examined an information update system consisting of n-receiver nodes and a
single source that encrypts the information by using (k, n)-TSS. We have provided closed-
form expressions for the version age of k-keys TSS for both with memory and memoryless
schemes. The evaluations have shown that the version age of k-keys TSS for a node with
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memory ∆k is less than the version age of k-keys TSS for a node without memory ∆̄k on
the same network. We have observed that if gossip occurs fast enough or the source is
updated slowly enough, the memoryless scheme results in the same version age of k-keys
TSS as the memory scheme does. For a scalable homogeneous network, in which the gossip
rate is uniform, we have shown that ∆k converges to kλs/λe as the network grows. In
our work, nodes only send the keys that are received from the source node, ensuring that
any set of messages on the channels is not sufficient to decrypt the message at any time.
An alternative approach might be to consider the case where nodes can share keys that
are received from other nodes. For such a scheme, in future work, we aim to compute the
version age of k-keys TSS as a function of the number of keys in a message and find the
optimal message structure. Another future research direction would be to compute the
version age of k-keys TSS when there are informative keys in the network.
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APPENDICES

6.1 Reward Renewal Process

Let Z = ((S0, R0), (S1, R1), · · · ) be sequence of interarrival times and rewards. Suppose
that the rewards are nonnegative and that A = {At : t ∈ [0,∞)} is a nonnegative stochastic
process with:

1. t 7→ Yt piecewise continuous.

2. Rn+1 =
∫ Tn+1

Tn
Atdt for n ∈ N

where {Tn} is corresponding the sequence of time of arrivals, that is, Tn :=
∑n

i=0 Si.

Let ∆t =
∫ t

0 Asds for t ∈ [0,∞). If the interarrival times and reward pairs, Z =
(S0, R0), (S1, R1), · · · ) form an independent and identically distributed sequence of ran-
dom variables, then ∆ = {∆t : t ∈ [0,∞)} is a reward process associated with Z.

For a reward process associated with a sequence of interarrival times and rewards, we
have the following Theorem.

Theorem 3 (Reward Renewal Theorem,[35]). Suppose that ∆t for t ∈ [0,∞) is reward
process associated with Z = ((S0, R0), (S1, R1), · · · ). Let δ(t) = E[∆t] for t ∈ [0,∞) .
Then, we have:

1. ∆t

t
→ E[R]

E[S] as t → ∞ with probability 1.

2. δt
t
→ E[R]

E[S] as t → ∞.

where E[R] = E[Rn] and E[S] = E[Sn].

6.2 Proof of Thorem 1

Proof of Theorem 1. Recall the definition of the subsequence T 1. We define T 1 = {τℓa}
∞
a=0

as a subsequence of T such that Ak(τℓa) = 1. Let La be the elapsed time between two
consecutive successful arrivals of the subsequence T 1. If A[ℓ] = 1, it means that the
node could decrypt the information version ℓ − 1 before τℓ. We know that it is the event
Eℓ = {Xℓ−1

k:n−1 < U ℓ−1}. One can easily see that two events Eℓ and Eℓ+1 are independent.
It results in that the elapsed time between two successful arrivals of subsequence T 1 is
independent L = (L0, L1, · · · ) is a sequence of i.i.d random variables. Let Ra be version
age of k-keys integrated over the duration [τla , τla+1

) in a node, that is,

Ra =

∫ τla+1

τla

Ak(s)ds

By construction, a pair of (Ra, Rb) for any a 6= b is i.i.d.. This implies that R = (R0, R1, · · · )
is a sequence of i.i.d. random variables. From the definition of reward renewal process in
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Appendix 6.1, ∆(t) is reward renewal process associated with Z = ((L0, R0), (L1, R1), · · · ).
From Theorem 3, we have the following limit:

lim
t→∞

∆(t)

t
=

E[Ra]

E[La]
w.p. 1.

By definition, the random variable Ra is the sum of service times of the source updates
with version i to the node for ℓa ≤ i ≤ ℓa+1 − 1. From Lemma 1, we have:

E[Ra]

E[La]
=

E[
∑ℓa+1−1

i=ℓa
Si
j]

E[
∑ℓa+1−1

i=ℓa
U i]

=
E[
∑ℓa+1−1

i=ℓa
X i
(k:nj)

]

E[
∑ℓa+1−1

i=ℓa
U i]

=

∑la+1−1
i=la

E[X i
(k:nj)

]
∑ℓa+1−1

i=ℓa
E[U i]

=
E[Xk:nj

]

E[U ]

where E[X(k:nj)] = E[X i
(k:nj)

] and E[U ] = E[U i] for any i. It is worth noting that two random

variables X i
(k:nj)

and X i+1
(k:nj)

are not independent in the memory scheme if ℓa≤ i≤ℓa+1 − 1

for any a ∈ N, but they are identically distributed. This completes the proof.

6.3 Proof of Theorem 2

Consider (k, n)-TSS on nodes without memory. In this scheme, a node needs to get at least
k different keys with version stamp ℓ before τℓ+1 so that it can decrypt the status update
generated at τℓ. To be more precise, a node can decode the status update ℓ if X j

(k:nj)
≤ U

holds, otherwise, it misses.

Lemma 2. Let Aj[ℓ] be the version age of information at τℓ for the node j. In a memoryless

scheme, the sequence Aj [ℓ] is homogeneous success-run with the rate µj = Pr(X j
(k:nj)

≤ U).

Proof. We remove the index j on notation, as it would be sufficient to prove the results for
an arbitrary node. By abuse of notation, we denote the set of the first arrival times of edges
that are connected to the node after τℓ by X ℓ. One can easily show that (X ℓ

(k:n−1), U
ℓ) and

(X ℓ+1
(k:n−1), U

ℓ+1) for any ℓ are independent. This implies that A[ℓ] has Markov property
and it evolves as follows:

A[ℓ+ 1] =

{

1 if X ℓ
(k:n−1) ≤ U ℓ

A[ℓ] + 1 if X ℓ
(k:n−1) > U ℓ

(8)

and A[0] is 1 by definition. It follows that A[ℓ] is a discrete-time Markov chain on infinite
states A := {1, 2, · · · } with the initial distribution π = [1, 0, 0, · · · ] and the state transition
matrix of P

P :=





µ 1−µ ···
µ 1−µ ···
µ 1−µ ···

...
. . .




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where µ = Pr(X ℓ
(k:n−1) ≤ U ℓ). This then says that the sequence A[ℓ] is a homogeneous

success-run chain with rate µ.

As an easy corollary to Lemma 2, the random variable Aj [ℓ] has truncated geometric
distribution at ℓ + 1 with success rate µj. As ℓ goes to infinity, E[Aj [ℓ]] goes to 1/µj for
node j.

Now, we can prove Theorem 2.

Proof of Theorem 2. By abuse of notation, we remove the index j on notation as it is
sufficient to prove the result for an arbitrary node. We have the stochastic process Āk(t)
defined in (1). Recall the condition for the reward process provided in Appendix 6.1. Then,
one can compute Rℓ (defined in Appendix 6.1) as follows:

Rℓ =

∫ τℓ

τℓ−1

Āk(t)dt (9)

Rℓ = A[ℓ− 1](1EX
ℓ−1
(k:n−1) + 1EcU ℓ−1) (10)

where the event E = {X ℓ−1
(k:n−1) ≤ U ℓ−1} and we denote complement by Ec. Then, this says

that the process ∆̄k(t) is a reward process associated with Z = ((U1, R1), (U2, R2), · · · ).
Let E[A] be the expectation of A[ℓ] where ℓ goes to infinity. From Theorem 3 and (9), we
can compute the expectation of Rℓ as ℓ goes to infinity, denoted by E[R], as follows:

E[R] = E[A](E[1EX(k:n−1)] + E[1EcU ])

It is worth noting that the event E and the pair of random variables (X(k:n−1), U) are not
independent. As a corollary of Theorem 3, we have the following:

∆k(t)

t
→

E[A](E[1EX(k:n−1)] + E[1EcU ])

E[U ]
w.p. 1 as t → ∞.

From Lemma 2, we know that E[A] = 1
µ
where µ = Pr(E). Then, we have the following.

∆k = lim
t→∞

∆k(t)

t
=

E[1EX(k:n−1)] + E[1EcU ]

Pr(E)E[U ]
w.p. 1

=
E[min(X(k:n−1), U)]

Pr(E)E[U ]
w.p. 1

It completes the proof.
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Figure 7: Sample timeline of the source update and the activation of edges that are all
connected to a unique node. The time of activation of each edge is marked by (•).

6.4 Proof of Corollary 2.1

Consider an individual node in a scalable homogeneous network and let us focus on an
arbitrary update cycle ℓ. Recall the set X , it is the set of the elapsed time between the
first activation of edges connected to the node and τℓ. In a scalable homogenous network,
the set X is a set of i.i.d. random variables from an exponential distribution with mean
(n−1)
λe

.

Let Y k be min{X(k:n−1), U}. We need to find E[Y k] to compute (6). Let X̃i:n−1 be the

difference between ith and (i−1)th order statistics of the set X for i > 0 and X̃1:n−1 =
X(1:n−1). Thus, by construction, we have:

X(k:n−1) =

k
∑

j=1

X̃j:n−1

Let Ỹi = min{X̃i:n−1, U
ℓ}. One can see that, from memoryless property, the random

variable X̃i:n−1 corresponds to the minimum of a set of (n−i) i.i.d. random variables from

an exponential distribution with mean (n−1)
λe

. Thus, the random variable X̃i:n−1 is also an
exponential random variable, the parameter of which is equal to the sum of the param-
eters of (n − i) i.i.d. random variables, and precisely its mean is equal to (n−1)

λe(n−i) . This

implies that the random variable Ỹi is the minimum of two independent exponentially dis-
tributed random variables. From [34, Prob. 9.4.1], the random variable Ỹi is exponentially
distributed with the mean

E[Ỹi] =
1

λe
(n−i)
(n−1) + λs

, (11)

and Pr(U ℓ>X̃i:n−1) for some 0 < i < n, can be found as:

Pr(U ℓ>X̃i:n−1) =
λe

(n−i)
(n−1)

λe
(n−i)
(n−1)+λs

. (12)
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From the total law of expectation and memoryless property of U ℓ, we have the following:

E[Y k] =Pr(U ℓ≤X̃1:n−1)E[Ỹ1]

+Pr(U ℓ≤X̃2:n−1)Pr(U ℓ>X̃1:n−1)(E[Ỹ1]+E[Ỹ2])

...

+Pr(U ℓ≤X̃i:n−1)
k−2
∏

i=1

Pr(U ℓ>X̃i:n−1)
k−1
∑

i=1

E[Ỹi]

+
k−1
∏

i=1

Pr(U ℓ>X̃i:n−1)(
k−1
∑

i=1

E[Ỹi])

If we rearrange the sum above, we obtain:

E[Y k] = E[Ỹ1] +
k
∑

j=2

(

E[Ỹj]

j−1
∏

i=1

Pr(U ℓ>X̃i:n−1)

)

. (13)

If we plug E[Ỹi] in (11) and Pr(U ℓ>X̃i:n−1) in (12) for i ≥ 1 into (13), we have:

E[Y k]=
1

λe+λs
+

k
∑

j=2





1

λe
(n−j)
(n−1)+λs

j−1
∏

i=1

λe
(n−i)
(n−1)

λe
(n−i)
(n−1)+λs



.

By definition, E[Y k] = E[min{X(k:n−1), U
ℓ}] and this completes the proof. One can easily

compute Pr(X(k:n−1) ≤U) in (7) by using the probability density function of the random
variable X(k:n−1), provided as:

f(k:n−1)(x) = λe

(

n− 2

k − 1

)

(1− e−
λex
n−1 )k−1(e−

λex
n−1 )n−k.
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